• 杭电acm 1204 糖果大战(马尔可夫过程)


    糖果大战

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3992    Accepted Submission(s): 1415

    Problem Description

    生日Party结束的那天晚上,剩下了一些糖果,Gandon想把所有的都统统拿走,Speakless于是说:“可以是可以,不过我们来玩24点,你不是已经拿到了一些糖果了吗?这样,如果谁赢一局,就拿走对方一颗糖,直到拿完对方所有的糖为止。”如果谁能算出来而对方算不出来,谁就赢,但是如果双方都能算出或者都不能,就算平局,不会有任何糖果的得失。
    Speakless是个喜欢提前想问题的人,既然他发起了这场糖果大战,就自然很想赢啦(不然可就要精光了-_-)。现在他需要你的帮忙,给你他每局赢的概率和Gardon每局赢的概率,请你给出他可能获得这场大战胜利的概率。
     
     Input
    每行有四个数,Speakless手上的糖果数N、Gardon手上的糖果数M(0<=N,M<=50)、一局Speakless能解答出来的概率p、一个问题Gardon能解答出来的概率q(0<=p,q<=1)。
     
     Output
    每行一个数,表示Speakless能赢的概率(用百分比计算,保留到小数点后2位)。
     
    Sample Input
    50 50 0.5 0.5 10 10 0.51 0.5 50 50 0.51 0.5
     
    Sample Output
    0.50 0.60 0.88
     
     
    这是一道代码简单易懂,算法却很难的结构。在网上搜了写题方法,说要用到马尔可夫过程,结果去百度马尔可夫过程,发现————这是什么鬼,完全超出我的了解,然后我搜集到了一位大神的方法,解释的清晰易懂,超级开心。
     
    这是一个概率题,首先我们必须清楚我们要求的是什么!
    
    设f(i)表示Speakless有i颗糖果的时候赢的概率,我们要求的就是f(n)
    则根据题意我们知道,这时候:
    1.Speakless赢这一局的概率是p(1-q),即f(i)变成f(i+1)
    2.Speakless输这一局的概率是q(1-p),即f(i)变成f(i-1)
    3.Speakless平这一局的概率是1-p(1-q)-q(1-p),即f(i)变成f(i)
    因此:
    f(i) = p(1-q)*f(i+1) + q(1-p)*f(i-1) + (1-p(1-q)-q(1-p))*f(i)
    稍微变形:
    p(1-q)*(f(i+1)-f(i)) = q(1-p)*(f(i)-f(i-1))令g(i)=f(i)-f(i-1),
    则有p(1-q)*g(i) = q(1-p)g(i-1),即g(i)是等比数列,
    设k=q(1-p)/(p(1-q)),则g(i) = k*g(i-1)
    g(1) = f(1)-f(0)
    g(2) = f(1)-f(0)
    ...
    g(n) = f(n)-f(n-1)
    ...
    g(n+m) = f(n+m)-f(n+m-1)
    将上面的各个等式相加的:g(1)+g(2)+...+g(n+m)=f(n+m)-f(0)=1
    g(1)+g(2)+...+g(n+m)=g(1)*(1-k^(n+m))/(1-k)
    g(1)+g(2)+...+g(n)=g(1)*(1-k^(n))/(1-k)
    回到开始定义,我们知道f(0)=0 (表示已经输了),f(n+m)=1(表示已经赢了)
    g(1)=f(1)-f(0)=f(1)
    因此g(1)+g(2)+...+g(n+m) = f(1)*(1-k^(n+m))/(1-k)=1............................................(1)
    g(1)+g(2)+...+g(n) = f(1)*(1-k^(n))/(1-k)=f(n)...................................................(2)
    我们要求的就是f(n),在(2)式中,只要f(1)是未知的,因此需要更(1)先求出f(1).最终f(n)=(1-k^n)/(1-k^(m+n))需要注意的几个地方:N==0、M==0、p==0、q==0、p==q集中特殊情况! 
    #include <iostream>
    #include <iomanip>
    #include <cmath>
    using namespace std;
    int main()
    {
        int N,M;
        double p,q,rate,k;
        while(cin>>N>>M>>p>>q)
        {
            if(N==0){cout<<"0.00"<<endl;continue;}
            if(M==0){cout<<"1.00"<<endl;continue;}
            if(p==0||q==1){cout<<"0.00"<<endl;continue;}
            if(q==0||p==1){cout<<"1.00"<<endl;continue;}
            if(p==q) rate=1.0*N/(M+N);   //M,N不一定等于0.5
            else
            {
                k = q*(1-p)/(p*(1-q));
                rate = (1.0-pow(k,N))/(1.0-pow(k,M+N));      //幂运算
            }
            cout<<fixed<<setprecision(2)<<rate<<endl;    //设置浮点数输出的有效数字位数
        }
        return 0;
    
    }
    下面是大神写的方法源地址:http://acm.hdu.edu.cn/discuss/problem/post/reply.php?action=support&postid=13123&messageid=1&deep=0
  • 相关阅读:
    iOS11自定义tabBar重影问题
    iOS打包时遇到的has one iOS Distribution certificate but its private key is not installed的问题
    MAC本地生成SSH KEY的方法
    Mac版Sourcetree的安装使用
    Xcode报错:could not attach to pid:"1764"
    解决Xcode10 Library not loaded: /usr/lib/libstdc++.6造成的crash及报错
    socket调试工具(Mac版)
    iOS-基于TCP连接<Scoket-服务端>
    iOS自定义TabBar使用popToRootViewControllerAnimated返回后tabbar重叠
    [UIApplication sharedApplication].keyWindow.rootViewController
  • 原文地址:https://www.cnblogs.com/fromzore/p/9787294.html
Copyright © 2020-2023  润新知