• 基于Hadoop 2.6.0运行数字排序的计算


      上个博客写了Hadoop2.6.0的环境部署,下面写一个简单的基于数字排序的小程序,真正实现分布式的计算,原理就是对多个文件中的数字进行排序,每个文件中每个数字占一行,排序原理是按行读取后分块进行排序,最后对块进行合并,通俗来说就是首先对小于100的数据范围进行排序,然后对100-1000之间的数据进行排序,最后对大于1000的数据进行排序,最终这3块合成之后也一定是按顺序排列的,代码如下:

    import java.io.IOException;
    
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    
    import org.apache.hadoop.fs.Path;
    
    import org.apache.hadoop.io.IntWritable;
    
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Job;
    
    import org.apache.hadoop.mapreduce.Mapper;
    
    import org.apache.hadoop.mapreduce.Reducer;
    
    import org.apache.hadoop.mapreduce.Partitioner;
    
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class Sort {
    
        public static class Map extends
                Mapper<Object, Text, IntWritable, IntWritable> {
    
            private static IntWritable data = new IntWritable();
    
            public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
                String line = value.toString();
    
                data.set(Integer.parseInt(line));
    
                context.write(data, new IntWritable(1));
    
            }
    
        }
    
        public static class Reduce extends
                Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
    
            private static IntWritable linenum = new IntWritable(1);
    
            public void reduce(IntWritable key, Iterable<IntWritable> values,
                    Context context) throws IOException, InterruptedException {
    
                for (IntWritable val : values) {
    
                    context.write(linenum, key);
    
                    linenum = new IntWritable(linenum.get() + 1);
                }
    
            }
        }
    
        public static class Partition extends Partitioner<IntWritable, IntWritable> {
    
            @Override
            public int getPartition(IntWritable key, IntWritable value,
                    int numPartitions) {
                int MaxNumber = 65223;
                int bound = MaxNumber / numPartitions + 1;
                int keynumber = key.get();
                for (int i = 0; i < numPartitions; i++) {
                    if (keynumber < bound * i && keynumber >= bound * (i - 1))
                        return i - 1;
                }
                return 0;
            }
        }
    
        /**
         * @param args
         */
    
        public static void main(String[] args) throws Exception {
            // TODO Auto-generated method stub
            Configuration conf = new Configuration();
            String[] otherArgs = new GenericOptionsParser(conf, args)
                    .getRemainingArgs();
            if (otherArgs.length != 2) {
                System.err.println("Usage WordCount <int> <out>");
                System.exit(2);
            }
            Job job = new Job(conf, "Sort");
            job.setJarByClass(Sort.class);
            job.setMapperClass(Map.class);
            job.setPartitionerClass(Partition.class);
            job.setReducerClass(Reduce.class);
            job.setOutputKeyClass(IntWritable.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
    }

      将源文件上传到服务器后,进行编译,hadoop2.6.0的编译方式和之前的hadoop1.2.1不太一样,这次需要引入3个jar文件分别是:

      share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar

      share/hadoop/common/hadoop-common-2.6.0.jar

      share/hadoop/common/lib/commons-cli-1.2.jar

      编译命令这里为:

    javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar Sort.java

      如果忽略要警告可以添加-Xlint:deprecation参数进行编译:

    javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar -Xlint:deprecation Sort.java

      编译成功之后打包操作:

    jar -cvf sort.jar *.class

      打成sort.jar之后建立几个文件,格式就如下图所示:

      

      然后上传到HDFS文件系统之后,可以用hadoop来跑一下:

    hadoop jar sort.jar Sort /sort /sortoutput

      注意:输出目录,不能使用原来的,如果原来存在一个目录,不管是空的还是非空的,那么hadoop都会报错,所以应该指定一个不存在的目录,让hadoop去新建他

      等运行完毕,然后查看输出就行了:

    hdfs dfs -cat /sortoutput/*

      

      这样就简单的使用hadoop平台以分布式的方式运行了java应用

      

  • 相关阅读:
    21. Merge Two Sorted Lists
    20. Valid Parentheses
    19. Remove Nth Node From End of List
    18. 4Sum
    17. Letter Combinations of a Phone Number
    16. 3Sum Closest
    15. 3Sum
    14. Longest Common Prefix
    js的Dom操作
    C/S和B/S两种软件体系结构
  • 原文地址:https://www.cnblogs.com/freeweb/p/5158231.html
Copyright © 2020-2023  润新知