• 数组分割


    一、题目概述:有一个没有排序,元素个数为2N的正整数数组。要求把它分割为元素个数为N的两个数组,并使两个子数组的和最接近。
    假设数组A[1..2N]所有元素的和是SUM。模仿动态规划解0-1背包问题的策略,令S(k, i)表示前k个元素中任意i个元素的和的集合。显然:
    S(k, 1) = {A[i] | 1<= i <= k}
    S(k, k) = {A[1]+A[2]+…+A[k]}
    S(k, i) = S(k-1, i) U {A[k] + x | x属于S(k-1, i-1) }
    按照这个递推公式来计算,最后找出集合S(2N, N)中与SUM最接近的那个和,这便是答案。这个算法的时间复杂度是O(2^N).
    因为这个过程中只关注和不大于SUM/2的那个子数组的和。所以集合中重复的和以及大于SUM/2的和都是没有意义的。把这些没有意义的和剔除掉,剩下的有意义的和的个数最多就是SUM/2个。所以,我们不需要记录S(2N,N)中都有哪些和,只需要从SUM/2到1遍历一次,逐个询问这个值是不是在S(2N,N)中出现,第一个出现的值就是答案。我们的程序不需要按照上述递推公式计算每个集合,只需要为每个集合设一个标志数组,标记SUM/2到1这个区间中的哪些值可以被计算出来。关键代码如下:

    #include<iostream>
    using namespace std;
    
    //有一个没有排序,元素个数为2N的正整数数组。要求把它分割为元素个数为N的两个数组,并使两个子数组的和最接近。
    int arr[] = {0,1,5,7,8,9,6,3,11,20,17};
    const int N=5;
    const int SUM = 87;
    
    // 模仿动态规划解0-1背包问题的策略
    int solve1()
    {
        int i , j , s;
        int dp[2*N+1][N+1][SUM/2+2];
    
        /*
        用dp(i,j,c)来表示从前i个元素中取j个、且这j个元素之和不超过c的最佳(大)方案,在这里i>=j,c<=S
        状态转移方程:   
        限第i个物品       不取  
        dp(i,j,c)=max{dp(i-1,j-1,c-a[i])+a[i],dp(i-1,j,c)}
        dp(2N,N,SUM/2+1)就是题目的解。
        */
        //初始化
        memset(dp,0,sizeof(dp));
    
        for(i = 1 ; i <= 2*N ; ++i)
        {
            for(j = 1 ; j <= min(i,N) ; ++j)
            {
                for(s = SUM/2+1 ; s >= arr[i] ; --s)
                {
                    dp[i][j][s] = max(dp[i-1][j-1][s-arr[i]]+arr[i] , dp[i-1][j][s]);
                }
            }
        }
    
        //因为这为最终答案 dp[2*N][N][SUM/2+1];
        i=2*N , j=N , s=SUM/2+1;
        while(i > 0)
        {
            if(dp[i][j][s] == dp[i-1][j-1][s-arr[i]]+arr[i])   //判定这个状态是由哪个状态推导出来的
            {
                cout<<arr[i]<<" ";    //取中arr[i]
                j--;
                s -= arr[i];
            }    
            i--;
        }
        cout<<endl;
        return dp[2*N][N][SUM/2+1];
    }
    
    int solve2()
    {
        int i , j , s;
        int dp[N+1][SUM/2+2];     //取N+1件物品,总合不超过SUM/2+2,的最大值是多少 
        memset(dp,0,sizeof(dp));    //初始状态都为0
    
        for(i = 1 ; i <= 2*N ; ++i)
        {
            for(j = 1 ; j <= min(i,N) ; ++j)
            {
                for(s = SUM/2+1 ; s >= arr[i] ; --s)    //01背包从大到小,可以省空间,即最外层的空间
                {
                    dp[j][s] = max(dp[j-1][s-arr[i]]+arr[i] , dp[j][s]); 
                }
            }
        }
        //要求最优解则 空间不能优化,
        return dp[N][SUM/2+1];
    }
    
    int solve3()
    {
        int i , j , s;
        int isOK[N+1][SUM/2+2]; //isOK[i][v]表示是否可以找到i个数,使得它们之和等于v
        memset(isOK,0,sizeof(isOK));    //都不合法
        //注意初始化
        isOK[0][0] = 1; //可以,取0件物品,总合为0,是合法的
    
        for(i = 1 ; i <= 2*N ; ++i)
        {
            for( j = 1 ; j <= min(i,N) ; ++j)
            {
                for(s = SUM/2+1 ; s >= arr[i] ; --s) //从大到小,数组少了一维
                {
                    if( isOK[j-1][s-arr[i]] )
                        isOK[j][s] = 1;
                }
            }
        }
        for(s = SUM/2+1 ; s >= 0 ; --s)
        {
            if(isOK[N][s])
                return s;
        }
    
        //要求最优解则空间不能优化
        return 0;
    }
    
    int main(void)
    {
        int s1 = solve1();
        int s2 = solve2();
        int s3 = solve3();
        cout<<"s1="<<s1<<endl;
        cout<<"s2="<<s2<<endl;
        cout<<"s3="<<s3<<endl;
        system("pause");
        return 0;
    }

    二、扩展问题:  交换两个数组元素使两个数组和的差最小
    有两个数组a、b,大小都为n,数组元素的值任意整形数,无序;
    要求:通过交换a、b数组中的元素,使[数组a元素的和]与[数组b元素的和]之间的差最小。

    其实这个问题就是上面问题的变形,将a、b两个数组合并为一个数组,然后问题就转化为将2*n个元素数组分割为2个长度为n的数组,并使两个子数组的和最接近。
    另外,特别注意:如果数组中有负数的话,上面的背包策略就不能使用了(因为第三重循环中的s是作为数组的下标的,不能出现负数的),需要将数组中的所有数组都加上最小的那个负数的绝对值,将数组中的元素全部都增加一定的范围,全部转化为正数,然后再使用上面的背包策略就可以解决了。

    转自:http://blog.csdn.net/Hackbuteer1/article/details/7638305

  • 相关阅读:
    215. Kth Largest Element in an Array(partition逆序排序,index+1 == k)
    220. Contains Duplicate III(核心:set数组有序/桶排序)
    leetcode 772 基本计算器III(包含+-*/ 以及括号) 核心在于递归
    MTK8312 android 4.4 显示虚拟按键区源码修改
    高通android9.0 camera API1底层调用为HAL3而非HAL1
    使用yanzhenjie的Zbar Github项目时4.2版本上找不到so库的问题
    android studio CMake NDK:配置笔记
    android设置系统默认开机时间
    android开发里跳过的坑——GridView使用Glide加载图片不显示
    android系统编译打开系统蓝牙
  • 原文地址:https://www.cnblogs.com/freewater/p/2652974.html
Copyright © 2020-2023  润新知