• R语言学习


    箱线图
    箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图。在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具。就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义。
     
    下面这张图展示了Bar plot、Box plot、Volin plot和Bean plot对数据分布的反应。从Bar plot上只能看到数据标准差或标准误不同;Box plot可以看到数据分布的集中性不同;Violin plot和Bean plot展示的是数据真正的分布,尤其是对Biomodal数据的展示。
     
    Box plot从下到上展示的是最小值,第一四分位数 (箱子的下边线)、中位数 (箱子中间的线)、第三四分位数 (箱子上边线)、最大值,具体解读看这里扩增子图表解读1箱线图:Alpha多样性
    一步步解析箱线图绘制
    假设有这么一个基因表达矩阵,第一列为基因名字,后面几列为样品名字,想绘制下样品中基因表达的整体分布。
    profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3
    A;4;6;7;3.2;5.2;5.6;2;4;3
    B;6;8;9;5.2;7.2;7.6;4;6;5
    C;8;10;11;7.2;9.2;9.6;6;8;7
    D;10;12;13;9.2;11.2;11.6;8;10;9
    E;12;14;15;11.2;13.2;13.6;10;12;11
    F;14;16;17;13.2;15.2;15.6;12;14;13
    G;15;17;18;14.2;16.2;16.6;13;15;14
    H;16;18;19;15.2;17.2;17.6;14;16;15
    I;17;19;20;16.2;18.2;18.6;15;17;16
    J;18;20;21;17.2;19.2;19.6;16;18;17
    L;19;21;22;18.2;20.2;20.6;17;19;18
    M;20;22;23;19.2;21.2;21.6;18;20;19
    N;21;23;24;20.2;22.2;22.6;19;21;20
    O;22;24;25;21.2;23.2;23.6;20;22;21"
    读入数据并转换为ggplot2需要的长数据表格式
    profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
    # 在melt时保留位置信息
    # melt格式是ggplot2画图最喜欢的格式
    # 好好体会下这个格式,虽然多占用了不少空间,但是确实很方便
    
    library(ggplot2)
    library(reshape2)
    data_m <- melt(profile_text)
    head(data_m)
      variable value
    1  2cell_1     4
    2  2cell_1     6
    3  2cell_1     8
    4  2cell_1    10
    5  2cell_1    12
    6  2cell_1    14
    像往常一样,就可以直接画图了。
    # variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
    p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
    geom_boxplot() + 
    theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
    theme(legend.position="none")
    p
    # 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
    dev.off()
    箱线图出来了,看上去还可以,再加点色彩
    # variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
    p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
    geom_boxplot(aes(fill=factor(variable))) + 
    theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
    theme(legend.position="none")
    p
    # 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
    dev.off()
    再看看Violin plot
    # variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
    p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
    geom_violin(aes(fill=factor(variable))) + 
    theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
    theme(legend.position="none")
    p
    # 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
    dev.off()
    还有Jitter plot (这里使用的是ggbeeswarm包)
    library(ggbeeswarm)
    # 为了更好的效果,只保留其中一个样品的数据
    # grepl类似于Linux的grep命令,获取特定模式的字符串
    data_m2 <- data_m[grepl("_3", data_m$variable),]
     
    # variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
    p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) + 
    geom_quasirandom(aes(colour=factor(variable))) + 
    theme_bw() + theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), legend.key=element_blank()) +
    theme(legend.position="none")
    # 也可以用geom_jitter(aes(colour=factor(variable)))代替geom_quasirandom(aes(colour=factor(variable)))
    # 但个人认为geom_quasirandom给出的结果更有特色
    
    ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))
    绘制单个基因 (A)的箱线图
    为了更好的展示效果,下面的矩阵增加了样品数量和样品的分组信息。
    profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6
    A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
    B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5"
     
    profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
    
    data_m = data.frame(t(profile_text['A',]))
    data_m$sample = rownames(data_m)
    # 只挑选显示部分
    # grepl前面已经讲过用于匹配
    data_m[grepl('_[123]', data_m$sample),]
    获得样品分组信息 (这个例子比较特殊,样品的分组信息就是样品名字下划线前面的部分)
    # 可以利用strsplit分割,取出其前面的字符串
    # R中复杂的输出结果多数以列表的形式体现,在之前的矩阵操作教程中
    # 提到过用str函数来查看复杂结果的结构,并从中获取信息
    group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
    data_m$group = group
    data_m[grepl('_[123]', data_m$sample),]

    如果没有这个规律,也可以提到类似于下面的文件,指定样品所属的组的信息。

    sampleGroup_text="Sample;Group
    zygote_1;zygote
    zygote_2;zygote
    zygote_3;zygote
    zygote_4;zygote
    zygote_5;zygote
    zygote_6;zygote
    2cell_1;2cell
    2cell_2;2cell
    2cell_3;2cell
    2cell_4;2cell
    2cell_5;2cell
    2cell_6;2cell
    4cell_1;4cell
    4cell_2;4cell
    4cell_3;4cell
    4cell_4;4cell
    4cell_5;4cell
    4cell_6;4cell"
    
    #sampleGroup = read.table(text=sampleGroup_text,sep="	",header=1,check.names=F,row.names=1)
    #data_m <- merge(data_m, sampleGroup, by="row.names")
    # 会获得相同的结果,脚本注释掉了以免重复执行引起问题

    矩阵准备好了,开始画图了 (小提琴图做例子,其它类似)

    # 调整下样品出现的顺序
    data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
    # group和A为矩阵中两列的名字,group代表了值的属性,A代表基因A对应的表达值。
    # 注意看修改了的地方
    p <- ggplot(data_m, aes(x=group, y=A),color=group) + 
    geom_violin(aes(fill=factor(group))) + 
    theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
    theme(legend.position="none")
    p
    # 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
    长矩阵绘制箱线图
    常规矩阵绘制箱线图要求必须是个方正的矩阵输入,而有时想比较的几个组里面检测的值数目不同。比如有三个组,GrpA组检测了6个病人,GrpB组检测了10个病人,GrpC组是12个正常人的检测数据。这时就很难形成一个行位检测值,列为样品的矩阵,长表格模式就适合与这种情况。
    long_table <- "Grp;Value
    GrpA;10
    GrpA;11
    GrpA;12
    GrpB;5
    GrpB;4
    GrpB;3
    GrpB;2
    GrpC;2
    GrpC;3"
     
    long_table <- read.table(text=long_table,sep="	",header=1,check.names=F)
    
    p <- ggplot(long_table, aes(x=Grp, y=Value),color=Grp) + 
    geom_violin(aes(fill=factor(Grp))) + 
    theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
    theme(legend.position="none")
    p
    长表格形式自身就是常规矩阵melt后的格式,这种用来绘制箱线图就很简单了,就不做解释了。
  • 相关阅读:
    python 一
    opengl 正方体+模拟视角旋转
    MFC窗口实现最小化到托盘 右键菜单和还原
    C++获取当前机器内网IP地址
    ubuntu vim终端编辑命令
    整理网站优化(SEO)的方案
    c++函数声明的位置对函数重载的影响
    lua调用dll demo
    一、智能指针及线程同步总结------linux多线程服务端编程
    vscode remote wsl 的NoPermissions permission denied问题
  • 原文地址:https://www.cnblogs.com/freescience/p/7454874.html
Copyright © 2020-2023  润新知