• 单例模式


    优点:

    • 1、在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如管理学院首页页面缓存)。
    • 2、避免对资源的多重占用(比如写文件操作)。

    缺点:没有接口,不能继承,与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心外面怎么样来实例化。

    使用场景:

    • 1、要求生产唯一序列号。
    • 2、WEB 中的计数器,不用每次刷新都在数据库里加一次,用单例先缓存起来。
    • 3、创建的一个对象需要消耗的资源过多,比如 I/O 与数据库的连接等。

    注意事项:getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成 instance 被多次实例化。

    原文链接:https://www.runoob.com/design-pattern/singleton-pattern.html

    单例模式:

    步骤 1

    创建一个 Singleton 类。

    SingleObject.java

    public class SingleObject {
     
       //创建 SingleObject 的一个对象
       private static SingleObject instance = new SingleObject();
     
       //让构造函数为 private,这样该类就不会被实例化
       private SingleObject(){}
     
       //获取唯一可用的对象
       public static SingleObject getInstance(){
          return instance;
       }
     
       public void showMessage(){
          System.out.println("Hello World!");
       }
    }

    步骤 2

    从 singleton 类获取唯一的对象。

    SingletonPatternDemo.java

    public class SingletonPatternDemo {
       public static void main(String[] args) {
     
          //不合法的构造函数
          //编译时错误:构造函数 SingleObject() 是不可见的
          //SingleObject object = new SingleObject();
     
          //获取唯一可用的对象
          SingleObject object = SingleObject.getInstance();
     
          //显示消息
          object.showMessage();
       }
    }

    步骤 3

    执行程序,输出结果:

    Hello World!

    单例模式的几种实现方式

    单例模式的实现有多种方式,如下所示:

    1、懒汉式,线程不安全

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:

    描述:这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。
    这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。

    实例

    Singleton 
    public class Singleton {  
        private static Singleton instance;  
        private Singleton (){}  
      
        public static Singleton getInstance() {  
          if (instance == null) {  
             instance = new Singleton();  
          }  
          return instance;  
        }  
    }

    接下来介绍的几种实现方式都支持多线程,但是在性能上有所差异。

    2、懒汉式,线程安全

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:

    描述:这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。
    优点:第一次调用才初始化,避免内存浪费。
    缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
    getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。

    实例

    Singleton 
    public class Singleton {  
        private static Singleton instance;  
        private Singleton (){}  
        public static synchronized Singleton getInstance() {  
          if (instance == null) {  
             instance = new Singleton();  
          }  
          return instance;  
        }  
    }

    3、饿汉式

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:

    描述:这种方式比较常用,但容易产生垃圾对象。
    优点:没有加锁,执行效率会提高。
    缺点:类加载时就初始化,浪费内存。
    它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。

    实例

    Singleton 
    public class Singleton {  
        private static Singleton instance = new Singleton();  
        private Singleton (){}  
        public static Singleton getInstance() {  
          return instance;  
        }  
    }

    4、双检锁/双重校验锁(DCL,即 double-checked locking)

    JDK 版本:JDK1.5 起

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:较复杂

    描述:这种方式采用双锁机制,安全且在多线程情况下能保持高性能。
    getInstance() 的性能对应用程序很关键。

    实例

    Singleton
    public class Singleton {  
        private volatile static Singleton singleton;  
        private Singleton (){}  
        public static Singleton getSingleton() {  
          if (singleton == null) {  
             synchronized (Singleton.class) {  
               if (singleton == null) {  
                 singleton = new Singleton();  
               }  
             }  
          }  
          return singleton;  
        }  
    }

    5、登记式/静态内部类

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:一般

    描述:这种方式能达到双检锁方式一样的功效,但实现更简单。对静态域使用延迟初始化,应使用这种方式而不是双检锁方式。这种方式只适用于静态域的情况,双检锁方式可在实例域需要延迟初始化时使用。
    这种方式同样利用了 classloader 机制来保证初始化 instance 时只有一个线程,它跟第 3 种方式不同的是:第 3 种方式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比第 3 种方式就显得很合理。

    实例

    Singleton 
    public class Singleton {  
        private static class SingletonHolder {  
          private static final Singleton INSTANCE = new Singleton();  
        }  
        private Singleton (){}  
        public static final Singleton getInstance() {  
          return SingletonHolder.INSTANCE;  
        }  
    }

    6、枚举

    JDK 版本:JDK1.5 起

    是否 Lazy 初始化:

    是否多线程安全:

    实现难度:

    描述:这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。它更简洁,自动支持序列化机制,绝对防止多次实例化。
    这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。
    不能通过 reflection attack 来调用私有构造方法。

    实例

    Singleton 
    public enum Singleton {  
        INSTANCE;  
        public void whateverMethod() {  
        }  
    }

    经验之谈:一般情况下,不建议使用第 1 种和第 2 种懒汉方式,建议使用第 3 种饿汉方式。只有在要明确实现 lazy loading 效果时,才会使用第 5 种登记方式。如果涉及到反序列化创建对象时,可以尝试使用第 6 种枚举方式。如果有其他特殊的需求,可以考虑使用第 4 种双检锁方式。

  • 相关阅读:
    杨辉三角
    100以内的素数
    九九
    MyDate
    计算器
    100以内素数
    杨辉三角形
    九九乘法表
    窗口关闭事件
    计算器界面
  • 原文地址:https://www.cnblogs.com/free-discipline/p/15293820.html
Copyright © 2020-2023  润新知