• 浅谈分布式消息技术 Kafka


    Kafka的基本介绍Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。主要应用场景是:日志收集系统和消息系统。Kafka主要设计目标如下:以时间复杂度为O(1)的方...

    Kafka的基本介绍

    Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

    主要应用场景是:日志收集系统和消息系统。

    Kafka主要设计目标如下:

    • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。

    • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。

    • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。

    • 同时支持离线数据处理和实时数据处理。

    Kafka的设计原理分析

    一个典型的kafka集群中包含若干producer,若干broker,若干consumer,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在consumer group发生变化时进行rebalance。producer使用push模式将消息发布到broker,consumer使用pull模式从broker订阅并消费消息。  

    Kafka专用术语:

    • Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。

    • Topic:一类消息,Kafka集群能够同时负责多个topic的分发。

    • Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。

    • Segment:partition物理上由多个segment组成。

    • offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息。

    • Producer:负责发布消息到Kafka broker。

    • Consumer:消息消费者,向Kafka broker读取消息的客户端。

    • Consumer Group:每个Consumer属于一个特定的Consumer Group。

    Kafka数据传输的事务特点

    • at most once:最多一次,这个和JMS中"非持久化"消息类似,发送一次,无论成败,将不会重发。消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。

    • at least once:消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功。消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。

    • exactly once:消息只会发送一次。kafka中并没有严格的去实现(基于2阶段提交),我们认为这种策略在kafka中是没有必要的。

    通常情况下"at-least-once"是我们首选。

    Kafka消息存储格式

    Topic & Partition

    一个topic可以认为一个一类消息,每个topic将被分成多个partition,每个partition在存储层面是append log文件。

    在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。

    • 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。

    • 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。

    这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。

    • segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.

    • segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

    segment中index与data file对应关系物理结构如下:

    上图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

    其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message),以及该消息的物理偏移地址为497。

    了解到segment data file由许多message组成,下面详细说明message物理结构如下:

    参数说明:

    关键字解释说明
    8 byte offset 在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message
    4 byte message size message大小
    4 byte CRC32 用crc32校验message
    1 byte “magic" 表示本次发布Kafka服务程序协议版本号
    1 byte “attributes" 表示为独立版本、或标识压缩类型、或编码类型。
    4 byte key length 表示key的长度,当key为-1时,K byte key字段不填
    K byte key 可选
    value bytes payload 表示实际消息数据。

    副本(replication)策略

    Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。

    1) 数据同步

    kafka在0.8版本前没有提供Partition的Replication机制,一旦Broker宕机,其上的所有Partition就都无法提供服务,而Partition又没有备份数据,数据的可用性就大大降低了。所以0.8后提供了Replication机制来保证Broker的failover。

    引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。

    2) 副本放置策略

    为了更好的做负载均衡,Kafka尽量将所有的Partition均匀分配到整个集群上。

    Kafka分配Replica的算法如下:

    • 将所有存活的N个Brokers和待分配的Partition排序

    • 将第i个Partition分配到第(i mod n)个Broker上,这个Partition的第一个Replica存在于这个分配的Broker上,并且会作为partition的优先副本

    • 将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上

    假设集群一共有4个brokers,一个topic有4个partition,每个Partition有3个副本。下图是每个Broker上的副本分配情况。

    3) 同步策略

    Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少,Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。

    为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。

    Consumer读消息也是从Leader读取,只有被commit过的消息才会暴露给Consumer。

    Kafka Replication的数据流如下图所示:

    对于Kafka而言,定义一个Broker是否“活着”包含两个条件:

    • 一是它必须维护与ZooKeeper的session(这个通过ZooKeeper的Heartbeat机制来实现)。

    • 二是Follower必须能够及时将Leader的消息复制过来,不能“落后太多”。

    Leader会跟踪与其保持同步的Replica列表,该列表称为ISR(即in-sync Replica)。如果一个Follower宕机,或者落后太多,Leader将把它从ISR中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值或者Follower超过一定时间未向Leader发送fetch请求。

    Kafka只解决fail/recover,一条消息只有被ISR里的所有Follower都从Leader复制过去才会被认为已提交。这样就避免了部分数据被写进了Leader,还没来得及被任何Follower复制就宕机了,而造成数据丢失(Consumer无法消费这些数据)。而对于Producer而言,它可以选择是否等待消息commit。这种机制确保了只要ISR有一个或以上的Follower,一条被commit的消息就不会丢失。

    4) leader选举

    Leader选举本质上是一个分布式锁,有两种方式实现基于ZooKeeper的分布式锁:

    • 节点名称唯一性:多个客户端创建一个节点,只有成功创建节点的客户端才能获得锁

    • 临时顺序节点:所有客户端在某个目录下创建自己的临时顺序节点,只有序号最小的才获得锁

    Majority Vote的选举策略和ZooKeeper中的Zab选举是类似的,实际上ZooKeeper内部本身就实现了少数服从多数的选举策略。kafka中对于Partition的leader副本的选举采用了第一种方法:为Partition分配副本,指定一个ZNode临时节点,第一个成功创建节点的副本就是Leader节点,其他副本会在这个ZNode节点上注册Watcher监听器,一旦Leader宕机,对应的临时节点就会被自动删除,这时注册在该节点上的所有Follower都会收到监听器事件,它们都会尝试创建该节点,只有创建成功的那个follower才会成为Leader(ZooKeeper保证对于一个节点只有一个客户端能创建成功),其他follower继续重新注册监听事件。

    Kafka消息分组,消息消费原理

    同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。

    这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。

    Push vs. Pull

    作为一个消息系统,Kafka遵循了传统的方式,选择由Producer向broker push消息并由Consumer从broker pull消息。

    push模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。push模式的目标是尽可能以最快速度传递消息,但是这样很容易造成Consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据Consumer的消费能力以适当的速率消费消息。

    对于Kafka而言,pull模式更合适。pull模式可简化broker的设计,Consumer可自主控制消费消息的速率,同时Consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

    Kafak顺序写入与数据读取

    生产者(producer)是负责向Kafka提交数据的,Kafka会把收到的消息都写入到硬盘中,它绝对不会丢失数据。为了优化写入速度Kafak采用了两个技术,顺序写入和MMFile。

    顺序写入

    因为硬盘是机械结构,每次读写都会寻址,写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最“讨厌”随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。

    每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高。

    对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka是不会删除数据的,它会把所有的数据都保留下来,每个消费者(Consumer)对每个Topic都有一个offset用来表示读取到了第几条数据。

    即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘,它充分利用了现代操作系统分页存储来利用内存提高I/O效率。

    在Linux Kernal 2.2之后出现了一种叫做“零拷贝(zero-copy)”系统调用机制,就是跳过“用户缓冲区”的拷贝,建立一个磁盘空间和内存空间的直接映射,数据不再复制到“用户态缓冲区”系统上下文切换减少2次,可以提升一倍性能。

    通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存)。使用这种方式可以获取很大的I/O提升,省去了用户空间到内核空间复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)

    消费者(读取数据)

    试想一下,一个Web Server传送一个静态文件,如何优化?答案是zero copy。传统模式下我们从硬盘读取一个文件是这样的。

    先复制到内核空间(read是系统调用,放到了DMA,所以用内核空间),然后复制到用户空间(1、2);从用户空间重新复制到内核空间(你用的socket是系统调用,所以它也有自己的内核空间),最后发送给网卡(3、4)。

    Zero Copy中直接从内核空间(DMA的)到内核空间(Socket的),然后发送网卡。这个技术非常普遍,Nginx也是用的这种技术。

    实际上,Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把“文件”发送给消费者。当不需要把整个文件发出去的时候,Kafka通过调用Zero Copy的sendfile这个函数,这个函数包括:

    • out_fd作为输出(一般及时socket的句柄)

    • in_fd作为输入文件句柄

    • off_t表示in_fd的偏移(从哪里开始读取)

    • size_t表示读取多少个

    「 浅谈大规模分布式系统中那些技术点」系列文章:

    Reference

    http://www.cnblogs.com/liuming1992/p/6423007.html

    http://blog.csdn.net/lifuxiangcaohui/article/details/51374862

    http://www.jasongj.com/2015/01/02/Kafka深度解析

    http://www.infoq.com/cn/articles/kafka-analysis-part-2

    http://zqhxuyuan.github.io/2016/02/23/2016-02-23-Kafka-Controller

    https://tech.meituan.com/kafka-fs-design-theory.html

    https://my.oschina.net/silence88/blog/856195

    https://toutiao.io/posts/508935/app_preview


    转载请并标注: “本文转载自 linkedkeeper.com (文/张松然)”

  • 相关阅读:
    20172315 2017-2018-2 《程序设计与数据结构》第一周学习总结
    预备作业03
    寒假作业02
    寒假作业01
    2017-2018-2 20172310『Java程序设计』课程 结对编程练习_四则运算_第二周
    20172310 2017-2018-2 《程序设计与数据结构》第八周学习总结
    2017-2018-2 20172310『Java程序设计』课程 结对编程练习_四则运算_第一周
    20172310 《程序设计与数据结构》实验二报告
    20172310 2017-2018-2 《程序设计与数据结构》第七周学习总结
    20172310 2017-2018-2 《程序设计与数据结构》第六周学习总结
  • 原文地址:https://www.cnblogs.com/frankyou/p/7238115.html
Copyright © 2020-2023  润新知