以下是参考的大牛的,可以说是读后感;
Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard
Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,
- 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
-
以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环; - 为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。
可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).
首先介绍一下松弛计算。如下图:
松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况
则不会修改点B的值,因为3+4>6。
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。
考虑如下的图:
经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。
在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。
所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。
#include <iostream> using namespace std; const int maxnum = 100; const int maxint = 99999; // 边, typedef struct Edge{ int u, v; // 起点,终点 int weight; // 边的权值 }Edge; Edge edge[maxnum]; // 保存边的值 int dist[maxnum]; // 结点到源点最小距离 int nodenum, edgenum, source; // 结点数,边数,源点 // 初始化图 void init() { // 输入结点数,边数,源点 cin >> nodenum >> edgenum >> source; for(int i=1; i<=nodenum; ++i) dist[i] = maxint; dist[source] = 0; for(int i=1; i<=edgenum; ++i) { cin >> edge[i].u >> edge[i].v >> edge[i].weight; if(edge[i].u == source) //注意这里设置初始情况 dist[edge[i].v] = edge[i].weight; } } // 松弛计算 void relax(int u, int v, int weight) { if(dist[v] > dist[u] + weight) dist[v] = dist[u] + weight; } bool Bellman_Ford() { for(int i=1; i<=nodenum-1; ++i) //为什么要进行的次数是nodenum-1? for(int j=1; j<=edgenum; ++j) relax(edge[j].u, edge[j].v, edge[j].weight); bool flag = 1; // 判断是否有负环路(为什么?看上面的解析) //if在上面未更新nodenum-1次的情况下 会使得dist[edge[i].v] > dist[edge[i].u] + edge[i].weight 因为未更新完全 为什么要nodenum-1次?看解析 for(int i=1; i<=edgenum; ++i) if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight) { flag = 0; break; } return flag; } int main() { init(); if(Bellman_Ford()) for(int i = 1 ;i <= nodenum; i++) cout << dist[i] << endl; return 0; } /* 7 10 1 1 2 4 1 3 5 2 3 5 3 4 6 4 7 10 6 7 1 1 6 8 5 6 3 5 7 1 2 5 1 0 4 5 11 5 8 6 */ //问题一: //为什么经过n-1次循环就能得到最短路径? //问题二: //第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况: //d(v) > d (u) + w(u,v) //则返回false,表示途中存在从源点可达的权为负的回路。 //为什么存在d(v) > d (u) + w(u,v)就表示途中存在从源点可达的权为负的回路?? //问题1: //for(int i=1; i<=nodenum-1; ++i) //松弛n-1次,即对无闭环回路(n-1条边)分别relax。 //问题2: //因为d(u)+w(u,v)在w(u,w)是正的情况下,一定大于d(v)。 //补充: //考虑:为什么要循环V-1次? //答:因为最短路径肯定是个简单路径,不可能包含回路的, //如果包含回路,且回路的权值和为正的,那么去掉这个回路,可以得到更短的路径 //如果回路的权值是负的,那么肯定没有解了 // //图有n个点,又不能有回路 //所以最短路径最多n-1边 // //又因为每次循环,至少relax一边 //所以最多n-1次就行了
版权声明:本文为博主原创文章,未经博主允许不得转载。