• POJ 3608 Bridge Across Islands (旋转卡壳)


    【题目链接】 http://poj.org/problem?id=3608

    【题目大意】

      求出两个凸包之间的最短距离

    【题解】

      我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点画线,
      做旋转卡壳,答案一定包含在这个过程中

    【代码】

    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    using namespace std;
    double EPS=1e-10;
    const double INF=0x3F3F3F3F;
    const double PI=acos(-1.0);
    double add(double a,double b){
        if(abs(a+b)<EPS*(abs(a)+abs(b)))return 0;
        return a+b;
    }
    struct P{
        double x,y;
        P(){}
        P(double x,double y):x(x),y(y){}
        P operator + (P p){return P(add(x,p.x),add(y,p.y));}
        P operator - (P p){return P(add(x,-p.x),add(y,-p.y));}
        P operator * (double d){return P(x*d,y*d);}
        double dot(P p){return add(x*p.x,y*p.y);} //点积
        double det(P p){return add(x*p.y,-y*p.x);}  //叉积
    };
    bool cmp_y(const P& p,const P& q){
        if(p.y!=q.y)return p.y<q.y;
        return p.x<q.x;  
    }
    double dist(P p,P q){return sqrt((p-q).dot(p-q));}
    double cross(P a, P b,P c){return(b-a).det(c-a);}
    double multi(P a,P b,P c){return(b-a).dot(c-a);}
    // 点到线段距离 
    double point_to_line(P a,P b,P c){
        if(dist(a,b)<EPS)return dist(b,c);
        if(multi(a,b,c)<-EPS)return dist(a,c);
        if(multi(b,a,c)<-EPS)return dist(b,c);
        return fabs(cross(a,b,c)/dist(a,b));
    }
    // 线段到线段距离 
    double line_to_line(P A,P B,P C,P D){
        double a=point_to_line(A,B,C);
        double b=point_to_line(A,B,D);
        double c=point_to_line(C,D,A);
        double d=point_to_line(C,D,B);
        return min(min(a,b),min(c,d));
    }
    void anticlockwise_sort(P* p,int N){
        for(int i=0;i<N-2;i++){
            double tmp=cross(p[i],p[i+1],p[i+2]);
            if(tmp>EPS)return;
            else if(tmp<-EPS){
                reverse(p,p+N);
                return;
            }
        }
    }
    const int MAX_N=10000;
    int n,m;
    P ps[MAX_N],qs[MAX_N];
    void solve(){
        for(int i=0;i<n;i++)scanf("%lf%lf",&ps[i].x,&ps[i].y);
        for(int i=0;i<m;i++)scanf("%lf%lf",&qs[i].x,&qs[i].y);
        anticlockwise_sort(ps,n);
    		anticlockwise_sort(qs,m);
    		int i=0,j=0;
    		for(int k=0;k<n;k++)if(!cmp_y(ps[i],ps[k]))i=k;
        for(int k=0;k<n;k++)if(cmp_y(qs[j],qs[k]))j=k;
        double res=INF;
        ps[n]=ps[0]; qs[m]=qs[0];
        for(int k=0;k<n;k++){
        	while(cross(ps[i+1],qs[j+1],ps[i])-cross(ps[i+1],qs[j],ps[i])>EPS)j=(j+1)%m;
            res=min(res,line_to_line(ps[i],ps[i+1],qs[j],qs[j+1]));
            i=(i+1)%n;
        }printf("%.5lf
    ",res);	
    }
    int main(){
        while(~scanf("%d%d",&n,&m)&&n+m)solve();
        return 0;
    }
  • 相关阅读:
    【Java】【高精度】【组合数】【递推】poj1737 Connected Graph
    【递推】【推导】【乘法逆元】UVA
    【Java】【滚动数组】【动态规划】UVA
    【Java】【高精度】【递推】UVA
    【贪心】【multiset】Tinkoff Challenge
    【递推】【组合数】【容斥原理】UVA
    【递推】【组合计数】UVA
    【组合计数】UVA
    【预处理】【分类讨论】Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2) C. Fountains
    【DFS】【贪心】Codeforces Round #411 (Div. 1) C. Ice cream coloring
  • 原文地址:https://www.cnblogs.com/forever97/p/poj3608.html
Copyright © 2020-2023  润新知