【题目链接】 http://poj.org/problem?id=3608
【题目大意】
求出两个凸包之间的最短距离
【题解】
我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点画线,
做旋转卡壳,答案一定包含在这个过程中
【代码】
#include <cstdio> #include <algorithm> #include <cmath> #include <vector> using namespace std; double EPS=1e-10; const double INF=0x3F3F3F3F; const double PI=acos(-1.0); double add(double a,double b){ if(abs(a+b)<EPS*(abs(a)+abs(b)))return 0; return a+b; } struct P{ double x,y; P(){} P(double x,double y):x(x),y(y){} P operator + (P p){return P(add(x,p.x),add(y,p.y));} P operator - (P p){return P(add(x,-p.x),add(y,-p.y));} P operator * (double d){return P(x*d,y*d);} double dot(P p){return add(x*p.x,y*p.y);} //点积 double det(P p){return add(x*p.y,-y*p.x);} //叉积 }; bool cmp_y(const P& p,const P& q){ if(p.y!=q.y)return p.y<q.y; return p.x<q.x; } double dist(P p,P q){return sqrt((p-q).dot(p-q));} double cross(P a, P b,P c){return(b-a).det(c-a);} double multi(P a,P b,P c){return(b-a).dot(c-a);} // 点到线段距离 double point_to_line(P a,P b,P c){ if(dist(a,b)<EPS)return dist(b,c); if(multi(a,b,c)<-EPS)return dist(a,c); if(multi(b,a,c)<-EPS)return dist(b,c); return fabs(cross(a,b,c)/dist(a,b)); } // 线段到线段距离 double line_to_line(P A,P B,P C,P D){ double a=point_to_line(A,B,C); double b=point_to_line(A,B,D); double c=point_to_line(C,D,A); double d=point_to_line(C,D,B); return min(min(a,b),min(c,d)); } void anticlockwise_sort(P* p,int N){ for(int i=0;i<N-2;i++){ double tmp=cross(p[i],p[i+1],p[i+2]); if(tmp>EPS)return; else if(tmp<-EPS){ reverse(p,p+N); return; } } } const int MAX_N=10000; int n,m; P ps[MAX_N],qs[MAX_N]; void solve(){ for(int i=0;i<n;i++)scanf("%lf%lf",&ps[i].x,&ps[i].y); for(int i=0;i<m;i++)scanf("%lf%lf",&qs[i].x,&qs[i].y); anticlockwise_sort(ps,n); anticlockwise_sort(qs,m); int i=0,j=0; for(int k=0;k<n;k++)if(!cmp_y(ps[i],ps[k]))i=k; for(int k=0;k<n;k++)if(cmp_y(qs[j],qs[k]))j=k; double res=INF; ps[n]=ps[0]; qs[m]=qs[0]; for(int k=0;k<n;k++){ while(cross(ps[i+1],qs[j+1],ps[i])-cross(ps[i+1],qs[j],ps[i])>EPS)j=(j+1)%m; res=min(res,line_to_line(ps[i],ps[i+1],qs[j],qs[j+1])); i=(i+1)%n; }printf("%.5lf ",res); } int main(){ while(~scanf("%d%d",&n,&m)&&n+m)solve(); return 0; }