• 数据分析实战(1-2)-数据分析学习方法、框架、内容与目标


    开篇:数据分析学习方法、框架、内容与目标

    高效的学习方法: MAS 方法

    Multi-Dimension:想要掌握一个事物,就要从多个角度去认识它。

    Ask:不懂就问,程序员大多都很羞涩,突破这一点,不懂就问最重要。

    Sharing:最好的学习就是分享。用自己的语言讲出来,是对知识的进一步梳理

    技术学习的框架

    第一类是基础概念。

    第二类是工具,实操能力。

    第三类是题库,查漏补缺,思考进步。

    数据分析学习内容

    1.预习python; 2.基础; 3.算法; 4.实战; 5.工作:面试内容;晋升路径

    学习目标

    1.数据与算法思维; 2.工具; 3.更好的工作机会与价值

    01丨数据分析全景图及修炼指南

    全景图

    数据采集;数据挖掘;数据可视化

    修炼指南

    认知三步曲,从认知到工具,再到实战,是我最想给你分享的学习建议。

    1.不重复造轮子;2.工具决定效率;3.熟练度、题库

    操作:

    1.记录下你每天的认知。尤其是每次课程后,对知识点的自我理解。这些认知对应工具的哪些操作。

    2.用工具来表达你对知识点的掌握,并用自己的语言记录下这些操作笔记。

    3.做更多练习来巩固你的认知。

    02丨学习数据挖掘的最佳路径是什么?

    数据挖掘6 个步骤

    商业理解:从商业的角度理解项目需求,在这个基础上对数据挖掘的目标进行定义。

    数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。

    数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。

    模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。

    模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。

    上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。

    数据挖掘十大算法

    分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CARTl

    聚类算法:K-Means,EMl

    关联分析:Aprioril

    连接分析:PageRank

    数据算法的数学原理

    概率论与数理统计

    线性代数

    最优化方法

    图论

  • 相关阅读:
    ADexplorer
    Ldap登陆AD(Active Directory)进行认证的Java示例
    通过LDAP验证Active Directory服务
    APACHE + LDAP 的权限认证配置方法
    How to authenticate a user by uid and password?
    js汉字与拼音互转终极方案,附简单的JS拼音输入法【转】
    给MySQL增加mysql-udf-http和mysql-udf-json自定义函数,让MySQL有调用http接口和查询直接回JSON的能力
    CentOS6.7安装RabbitMQ3.6.5
    CentOS利用inotify+rsync实现文件同步
    CentOS两台服务器利用scp拷贝文件
  • 原文地址:https://www.cnblogs.com/foolangirl/p/14274380.html
Copyright © 2020-2023  润新知