• Hive常用函数的使用


    Hive常用函数的使用

    文章作者:foochane 


    原文链接:https://foochane.cn/article/2019062501.html

    1 基本介绍

    1.1 HIVE简单介绍

    Hive是一个可以将SQL翻译为MR程序的工具,支持用户将HDFS上的文件映射为表结构,然后用户就可以输入SQL对这些表(HDFS上的文件)进行查询分析。Hive将用户定义的库、表结构等信息存储hive的元数据库(可以是本地derby,也可以是远程mysql)中。

    1.2 Hive的用途

    • 做数据分析,不用自己写大量的MR程序,只需要写SQL脚本即可
    • 用于构建大数据体系下的数据仓库

    hive 2 以后 把底层引擎从MapReduce换成了Spark

    启动hive前要先启动hdfsyarn

    2 使用方式

    2.1 方式1:直接使用hive服务端

    输入命令 $ hive即可:

    hadoop@Master:~$ hive
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/usr/local/bigdata/hive-2.3.5/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/usr/local/bigdata/hadoop-2.7.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
    
    Logging initialized using configuration in file:/usr/local/bigdata/hive-2.3.5/conf/hive-log4j2.properties Async: true
    Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
    hive>show databases;
    OK
    dbtest
    default
    Time taken: 3.539 seconds, Fetched: 2 row(s)
    hive>
    
    

    技巧:
    让提示符显示当前库:

    hive>set hive.cli.print.current.db=true;
    
    

    显示查询结果是显示自带名称:

    hive>set hive.cli.print.header=true;
    
    

    这样设置只是对当前窗口有效,永久生效可以在当前用户目录下建一个.hiverc文件。
    加入如下内容:

    set hive.cli.print.current.db=true;
    set hive.cli.print.header=true;
    
    

    2.2 方式2:使用beeline客户端

    将hive启动为一个服务端,然后可以在任意一台机器上使用beeline客户端连接hive服务,进行交互式查询

    hive是一个单机的服务端可以在任何一台机器里安装,它访问的是hdfs集群。

    启动hive服务 :

    $ nohup hiveserver2 1>/dev/null 2>&1 &
    
    

    启动后,可以用beeline去连接,beeline是一个客户端,可以在任意机器启动,只要能够跟hive服务端相连即可。

    在本地启动beeline

    $ beeline -u jdbc:hive2://localhost:10000 -n hadoop -p hadoop
    
    

    在启动机器上启动beeline

    $ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
    
    

    示例:

    hadoop@Master:~$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
    Connecting to jdbc:hive2://Master:10000
    19/06/25 01:50:12 INFO jdbc.Utils: Supplied authorities: Master:10000
    19/06/25 01:50:12 INFO jdbc.Utils: Resolved authority: Master:10000
    19/06/25 01:50:13 INFO jdbc.HiveConnection: Will try to open client transport with JDBC Uri: jdbc:hive2://Master:10000
    Connected to: Apache Hive (version 2.3.5)
    Driver: Hive JDBC (version 1.2.1.spark2)
    Transaction isolation: TRANSACTION_REPEATABLE_READ
    Beeline version 1.2.1.spark2 by Apache Hive
    0: jdbc:hive2://Master:10000> 
    
    
    参数说明
    • u :指定连接方式
    • n :登录的用户(系统用户)
    • p :用户密码
    报错
     errorMessage:Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: hadoop is not allowed to impersonate hadoop), serverProtocolVersion:null)
    
    
    解决

    在 hadoop配置文件中的core-site.xml 文件中添加如下内容,然后重启hadoop集群:

    <property>
          <name>hadoop.proxyuser.hadoop.groups</name>
          <value>hadoop</value>
          <description>Allow the superuser oozie to impersonate any members of the group group1 and group2</description>
     </property>
     
     <property>
          <name>hadoop.proxyuser.hadoop.hosts</name>
          <value>Master,127.0.0.1,localhost</value>
          <description>The superuser can connect only from host1 and host2 to impersonate a user</description>
      </property>
    
    

    2.3 方式3:使用hive命令运行sql

    接用 hive -e 在命令行中运行sql命令,该命令可以一起运行多条sql语句,用;隔开。

    hive -e "sql1;sql2;sql3;sql4"
    
    

    另外,还可以使用 hive -f命令。

    事先将sql语句写入一个文件比如 q.hql ,然后用hive -f命令执行: 
     

    bin/hive -f q.hql
    
    

    2.4 方式4:写脚本

    可以将方式3写入一个xxx.sh脚本中,然后运行该脚本。

    3 表的基本操作

    3.1 新建数据库

    create database db1;
    
    

    示例:

    0: jdbc:hive2://Master:10000> create database db1;
    No rows affected (1.123 seconds)
    0: jdbc:hive2://Master:10000> show databases;
    +----------------+--+
    | database_name  |
    +----------------+--+
    | db1            |
    | dbtest         |
    | default        |
    +----------------+--+
    
    

    成功后,hive就会在/user/hive/warehouse/下建一个文件夹: db1.db

    3.2 删除数据库

    drop database db1;
    
    

    示例:

    0: jdbc:hive2://Master:10000> drop database db1;
    No rows affected (0.969 seconds)
    0: jdbc:hive2://Master:10000> show databases;
    +----------------+--+
    | database_name  |
    +----------------+--+
    | dbtest         |
    | default        |
    +----------------+--+
    
    

    3.3 建内部表

    use db1;
    create table t_test(id int,name string,age int)
    row format delimited
    fields terminated by ',';
    

    示例:

    0: jdbc:hive2://Master:10000> use db1;
    No rows affected (0.293 seconds)
    0: jdbc:hive2://Master:10000> create table t_test(id int,name string,age int)
    0: jdbc:hive2://Master:10000> row format delimited
    0: jdbc:hive2://Master:10000> fields terminated by ',';
    No rows affected (1.894 seconds)
    0: jdbc:hive2://Master:10000> desc db1.t_test;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | id        | int        |          |
    | name      | string     |          |
    | age       | int        |          |
    +-----------+------------+----------+--+
    3 rows selected (0.697 seconds)
    
    

    建表后,hive会在仓库目录中建一个表目录: /user/hive/warehouse/db1.db/t_test

    3.4 建外部表

    create external table t_test1(id int,name string,age int)
    row format delimited
    fields terminated by ','
    location '/user/hive/external/t_test1';
    
    

    这里的location指的是hdfs上的目录,可以直接在该目录下放入相应格式的文件,就可以在hive表中查看到。

    示例:

    0: jdbc:hive2://Master:10000> create external table t_test1(id int,name string,age int)
    0: jdbc:hive2://Master:10000> row format delimited
    0: jdbc:hive2://Master:10000> fields terminated by ','
    0: jdbc:hive2://Master:10000> location '/user/hive/external/t_test1';
    No rows affected (0.7 seconds)
    0: jdbc:hive2://Master:10000> desc db1.t_test1;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | id        | int        |          |
    | name      | string     |          |
    | age       | int        |          |
    +-----------+------------+----------+--+
    3 rows selected (0.395 seconds)
    
    

    本地创建测试文件user.data

    1,xiaowang,28
    2,xiaoli,18
    3,xiaohong,23
    
    

    放入hdfs中:

    $ hdfs dfs -mkdir -p /user/hive/external/t_test1
    $ hdfs dfs -put ./user.data /user/hive/external/t_test1
    
    

    此时在hive表中就可以查看到数据:

    0: jdbc:hive2://Master:10000> select * from db1.t_test1;
    +-------------+---------------+--------------+--+
    | t_test1.id  | t_test1.name  | t_test1.age  |
    +-------------+---------------+--------------+--+
    | 1           | xiaowang      | 28           |
    | 2           | xiaoli        | 18           |
    | 3           | xiaohong      | 23           |
    +-------------+---------------+--------------+--+
    3 rows selected (8 seconds)
    
    

    注意:如果删除外部表,hdfs里的文件并不会删除

    也就是如果包db1.t_test1删除,hdfs下/user/hive/external/t_test1/user.data文件并不会被删除。

    3.5 导入数据

    本质上就是把数据文件放入表目录;

    可以用hive命令来做:

    load data [local] inpath '/data/path' [overwrite] into table t_test;
    
    

    local代表导入本地数据。

    导入本地数据

    load data local inpath '/home/hadoop/user.data' into table t_test;
    
    

    示例:

    0: jdbc:hive2://Master:10000> load data local inpath '/home/hadoop/user.data' into table t_test;
    No rows affected (2.06 seconds)
    0: jdbc:hive2://Master:10000> select * from db1.t_test;
    +------------+--------------+-------------+--+
    | t_test.id  | t_test.name  | t_test.age  |
    +------------+--------------+-------------+--+
    | 1          | xiaowang     | 28          |
    | 2          | xiaoli       | 18          |
    | 3          | xiaohong     | 23          |
    +------------+--------------+-------------+--+
    
    

    导入hdfs中的数据

    load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
    
    

    示例:

    0: jdbc:hive2://Master:10000> load data inpath '/user/hive/external/t_test1/user.data' into table t_test;
    No rows affected (1.399 seconds)
    0: jdbc:hive2://Master:10000> select * from db1.t_test;
    +------------+--------------+-------------+--+
    | t_test.id  | t_test.name  | t_test.age  |
    +------------+--------------+-------------+--+
    | 1          | xiaowang     | 28          |
    | 2          | xiaoli       | 18          |
    | 3          | xiaohong     | 23          |
    | 1          | xiaowang     | 28          |
    | 2          | xiaoli       | 18          |
    | 3          | xiaohong     | 23          |
    +------------+--------------+-------------+--+
    6 rows selected (0.554 seconds)
    
    

    注意:从本地导入数据,本地数据不是发生变化,从hdfs中导入数据,hdfs中的导入的文件会被移动到数据仓库相应的目录下

    3.6 建分区表

    分区的意义在于可以将数据分子目录存储,以便于查询时让数据读取范围更精准

    create table t_test1(id int,name string,age int,create_time bigint)
    partitioned by (day string,country string)
    row format delimited
    fields terminated by ',';
    
    

    插入数据到指定分区:

    > load data [local] inpath '/data/path1' [overwrite] into table t_test partition(day='2019-06-04',country='China');
    > load data [local] inpath '/data/path2' [overwrite] into table t_test partition(day='2019-06-05',country='China');
    > load data [local] inpath '/data/path3' [overwrite] into table t_test partition(day='2019-06-04',country='England');
    
    

    导入完成后,形成的目录结构如下:

    /user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=China/...
    /user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=England/...
    /user/hive/warehouse/db1.db/t_test1/day=2019-06-05/country=China/...
    
    

    4 查询语法

    4.1 条件查询

    select * from t_table where a<1000 and b>0;
    
    

    4.2 join关联查询

    各类join

    测试数据:
    a.txt:

    a,1
    b,2
    c,3
    d,4
    
    

    b.txt:

    b,16
    c,17
    d,18
    e,19
    
    

    建表导入数据:

    create table t_a(name string,num int)
    row format delimited
    fields terminated by ',';
    
    create table t_b(name string,age int)
    row format delimited
    fields terminated by ',';
    
    load data local inpath '/home/hadoop/a.txt' into table t_a;
    load data local inpath '/home/hadoop/b.txt' into table t_b;
    
    

    表数据如下:

    0: jdbc:hive2://Master:10000> select * from t_a;
    +-----------+----------+--+
    | t_a.name  | t_a.num  |
    +-----------+----------+--+
    | a         | 1        |
    | b         | 2        |
    | c         | 3        |
    | d         | 4        |
    +-----------+----------+--+
    4 rows selected (0.523 seconds)
    0: jdbc:hive2://Master:10000> select * from t_b;
    +-----------+----------+--+
    | t_b.name  | t_b.age  |
    +-----------+----------+--+
    | b         | 16       |
    | c         | 17       |
    | d         | 18       |
    | e         | 19       |
    +-----------+----------+--+
    
    4 rows selected (0.482 seconds)
    
    

    4.3 内连接

    指定join条件

    select a.*,b.*
    from 
    t_a a join t_b b on a.name=b.name;
    
    

    示例:

    0: jdbc:hive2://Master:10000> select a.*,b.*
    0: jdbc:hive2://Master:10000> from
    0: jdbc:hive2://Master:10000> t_a a join t_b b on a.name=b.name;
    ....
    +---------+--------+---------+--------+--+
    | a.name  | a.num  | b.name  | b.age  |
    +---------+--------+---------+--------+--+
    | b       | 2      | b       | 16     |
    | c       | 3      | c       | 17     |
    | d       | 4      | d       | 18     |
    +---------+--------+---------+--------+--+
    
    

    4.4 左外连接(左连接)

    select a.*,b.*
    from 
    t_a a left outer join t_b b on a.name=b.name;
    
    

    示例:

    0: jdbc:hive2://Master:10000> select a.*,b.*
    0: jdbc:hive2://Master:10000> from
    0: jdbc:hive2://Master:10000> t_a a left outer join t_b b on a.name=b.name;
    ...
    +---------+--------+---------+--------+--+
    | a.name  | a.num  | b.name  | b.age  |
    +---------+--------+---------+--------+--+
    | a       | 1      | NULL    | NULL   |
    | b       | 2      | b       | 16     |
    | c       | 3      | c       | 17     |
    | d       | 4      | d       | 18     |
    +---------+--------+---------+--------+--+
    
    
    

    4.5 右外连接(右连接)

    select a.*,b.*
    from 
    t_a a right outer join t_b b on a.name=b.name;
    
    

    示例:

    0: jdbc:hive2://Master:10000> select a.*,b.*
    0: jdbc:hive2://Master:10000> from
    0: jdbc:hive2://Master:10000> t_a a right outer join t_b b on a.name=b.name;
    ....
    +---------+--------+---------+--------+--+
    | a.name  | a.num  | b.name  | b.age  |
    +---------+--------+---------+--------+--+
    | b       | 2      | b       | 16     |
    | c       | 3      | c       | 17     |
    | d       | 4      | d       | 18     |
    | NULL    | NULL   | e       | 19     |
    +---------+--------+---------+--------+--+
    
    

    4.6 全外连接

    select a.*,b.*
    from
    t_a a full outer join t_b b on a.name=b.name;
    
    

    示例:

    0: jdbc:hive2://Master:10000> select a.*,b.*
    0: jdbc:hive2://Master:10000> from
    0: jdbc:hive2://Master:10000> t_a a full outer join t_b b on a.name=b.name;
    WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
    +---------+--------+---------+--------+--+
    | a.name  | a.num  | b.name  | b.age  |
    +---------+--------+---------+--------+--+
    | a       | 1      | NULL    | NULL   |
    | b       | 2      | b       | 16     |
    | c       | 3      | c       | 17     |
    | d       | 4      | d       | 18     |
    | NULL    | NULL   | e       | 19     |
    +---------+--------+---------+--------+--+
    
    

    4.7 左半连接

    求存在于a表,且b表里也存在的数据。

    select a.*
    from 
    t_a a left semi join t_b b on a.name=b.name;
    
    

    示例:

    0: jdbc:hive2://Master:10000> select a.*
    0: jdbc:hive2://Master:10000> from
    0: jdbc:hive2://Master:10000> t_a a left semi join t_b b on a.name=b.name;
    .....
    +---------+--------+--+
    | a.name  | a.num  |
    +---------+--------+--+
    | b       | 2      |
    | c       | 3      |
    | d       | 4      |
    +---------+--------+--+
    
    

    4.8 group by分组聚合

    构建测试数据

    192.168.33.3,http://www.xxx.cn/stu,2019-08-04 15:30:20
    192.168.33.3,http://www.xxx.cn/teach,2019-08-04 15:35:20
    192.168.33.4,http://www.xxx.cn/stu,2019-08-04 15:30:20
    192.168.33.4,http://www.xxx.cn/job,2019-08-04 16:30:20
    
    192.168.33.5,http://www.xxx.cn/job,2019-08-04 15:40:20
    192.168.33.3,http://www.xxx.cn/stu,2019-08-05 15:30:20
    192.168.44.3,http://www.xxx.cn/teach,2019-08-05 15:35:20
    192.168.33.44,http://www.xxx.cn/stu,2019-08-05 15:30:20
    192.168.33.46,http://www.xxx.cn/job,2019-08-05 16:30:20
    
    192.168.33.55,http://www.xxx.cn/job,2019-08-05 15:40:20
    192.168.133.3,http://www.xxx.cn/register,2019-08-06 15:30:20
    192.168.111.3,http://www.xxx.cn/register,2019-08-06 15:35:20
    192.168.34.44,http://www.xxx.cn/pay,2019-08-06 15:30:20
    192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
    192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
    192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
    192.168.33.25,http://www.xxx.cn/job,2019-08-06 15:40:20
    192.168.33.36,http://www.xxx.cn/excersize,2019-08-06 16:30:20
    192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
    

    建分区表,导入数据:

    create table t_pv(ip string,url string,time string)
    partitioned by (dt string)
    row format delimited 
    fields terminated by ',';
    
    load data local inpath '/home/hadoop/pv.log.0804' into table t_pv partition(dt='2019-08-04');
    load data local inpath '/home/hadoop/pv.log.0805' into table t_pv partition(dt='2019-08-05');
    load data local inpath '/home/hadoop/pv.log.0806' into table t_pv partition(dt='2019-08-06');
    
    

    查看数据:

    0: jdbc:hive2://Master:10000> select * from t_pv;
    +----------------+------------------------------+----------------------+-------------+--+
    |    t_pv.ip     |           t_pv.url           |      t_pv.time       |   t_pv.dt   |
    +----------------+------------------------------+----------------------+-------------+--+
    | 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  | 2019-08-04  |
    | 192.168.33.3   | http://www.xxx.cn/teach      | 2019-08-04 15:35:20  | 2019-08-04  |
    | 192.168.33.4   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  | 2019-08-04  |
    | 192.168.33.4   | http://www.xxx.cn/job        | 2019-08-04 16:30:20  | 2019-08-04  |
    | 192.168.33.5   | http://www.xxx.cn/job        | 2019-08-04 15:40:20  | 2019-08-05  |
    | 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  | 2019-08-05  |
    | 192.168.44.3   | http://www.xxx.cn/teach      | 2019-08-05 15:35:20  | 2019-08-05  |
    | 192.168.33.44  | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  | 2019-08-05  |
    | 192.168.33.46  | http://www.xxx.cn/job        | 2019-08-05 16:30:20  | 2019-08-05  |
    | 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-05 15:40:20  | 2019-08-06  |
    | 192.168.133.3  | http://www.xxx.cn/register   | 2019-08-06 15:30:20  | 2019-08-06  |
    | 192.168.111.3  | http://www.xxx.cn/register   | 2019-08-06 15:35:20  | 2019-08-06  |
    | 192.168.34.44  | http://www.xxx.cn/pay        | 2019-08-06 15:30:20  | 2019-08-06  |
    | 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
    | 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
    | 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
    | 192.168.33.25  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
    | 192.168.33.36  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
    | 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
    +----------------+------------------------------+----------------------+-------------+--+
    

    查看表分区:

    show partitions t_pv;
    
    
    0: jdbc:hive2://Master:10000> show partitions t_pv;
    +----------------+--+
    |   partition    |
    +----------------+--+
    | dt=2019-08-04  |
    | dt=2019-08-05  |
    | dt=2019-08-06  |
    +----------------+--+
    3 rows selected (0.575 seconds)
    
    
    每一行的url变成大写
    • 针对每一行进行运算
    select ip,upper(url),time
    from t_pv
    
    
    0: jdbc:hive2://Master:10000> select ip,upper(url),time
    0: jdbc:hive2://Master:10000> from t_pv
    +----------------+------------------------------+----------------------+--+
    |       ip       |             _c1              |         time         |
    +----------------+------------------------------+----------------------+--+
    | 192.168.33.3   | HTTP://WWW.XXX.CN/STU        | 2019-08-04 15:30:20  |
    | 192.168.33.3   | HTTP://WWW.XXX.CN/TEACH      | 2019-08-04 15:35:20  |
    | 192.168.33.4   | HTTP://WWW.XXX.CN/STU        | 2019-08-04 15:30:20  |
    | 192.168.33.4   | HTTP://WWW.XXX.CN/JOB        | 2019-08-04 16:30:20  |
    | 192.168.33.5   | HTTP://WWW.XXX.CN/JOB        | 2019-08-04 15:40:20  |
    | 192.168.33.3   | HTTP://WWW.XXX.CN/STU        | 2019-08-05 15:30:20  |
    | 192.168.44.3   | HTTP://WWW.XXX.CN/TEACH      | 2019-08-05 15:35:20  |
    | 192.168.33.44  | HTTP://WWW.XXX.CN/STU        | 2019-08-05 15:30:20  |
    | 192.168.33.46  | HTTP://WWW.XXX.CN/JOB        | 2019-08-05 16:30:20  |
    | 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-05 15:40:20  |
    | 192.168.133.3  | HTTP://WWW.XXX.CN/REGISTER   | 2019-08-06 15:30:20  |
    | 192.168.111.3  | HTTP://WWW.XXX.CN/REGISTER   | 2019-08-06 15:35:20  |
    | 192.168.34.44  | HTTP://WWW.XXX.CN/PAY        | 2019-08-06 15:30:20  |
    | 192.168.33.46  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
    | 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
    | 192.168.33.46  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
    | 192.168.33.25  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
    | 192.168.33.36  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
    | 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
    +----------------+------------------------------+----------------------+--+
    
    
    求每条url的访问次数
    select url ,count(1) --对分好组的数据进行逐行运算
    from t_pv
    group by url;
    
    
    0: jdbc:hive2://Master:10000> select url ,count(1)
    0: jdbc:hive2://Master:10000> from t_pv
    0: jdbc:hive2://Master:10000> group by url;
    ·····
    +------------------------------+------+--+
    |             url              | _c1  |
    +------------------------------+------+--+
    | http://www.xxx.cn/excersize  | 3    |
    | http://www.xxx.cn/job        | 7    |
    | http://www.xxx.cn/pay        | 1    |
    | http://www.xxx.cn/register   | 2    |
    | http://www.xxx.cn/stu        | 4    |
    | http://www.xxx.cn/teach      | 2    |
    +------------------------------+------+--+
    
    

    可以给_c1加入字段名称:

    select url ,count(1) as count
    from t_pv
    group by url;
    
    
    求每个页面的访问者中ip最大的一个
    select url,max(ip)
    from t_pv
    group by url;
    
    
    0: jdbc:hive2://Master:10000> select url,max(ip)
    0: jdbc:hive2://Master:10000> from t_pv
    0: jdbc:hive2://Master:10000> group by url;
    WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
    +------------------------------+----------------+--+
    |             url              |      _c1       |
    +------------------------------+----------------+--+
    | http://www.xxx.cn/excersize  | 192.168.33.46  |
    | http://www.xxx.cn/job        | 192.168.33.55  |
    | http://www.xxx.cn/pay        | 192.168.34.44  |
    | http://www.xxx.cn/register   | 192.168.133.3  |
    | http://www.xxx.cn/stu        | 192.168.33.44  |
    | http://www.xxx.cn/teach      | 192.168.44.3   |
    +------------------------------+----------------+--+
    
    
    求每个用户访问同一个页面的所有记录中,时间最晚的一条
    select ip,url,max(time)
    from t_pv
    group by ip,url;
    
    
    0: jdbc:hive2://Master:10000> select ip,url,max(time)
    0: jdbc:hive2://Master:10000> from t_pv
    0: jdbc:hive2://Master:10000> group by ip,url;
    .....
    +----------------+------------------------------+----------------------+--+
    |       ip       |             url              |         _c2          |
    +----------------+------------------------------+----------------------+--+
    | 192.168.111.3  | http://www.xxx.cn/register   | 2019-08-06 15:35:20  |
    | 192.168.133.3  | http://www.xxx.cn/register   | 2019-08-06 15:30:20  |
    | 192.168.33.25  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  |
    | 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  |
    | 192.168.33.3   | http://www.xxx.cn/teach      | 2019-08-04 15:35:20  |
    | 192.168.33.36  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  |
    | 192.168.33.4   | http://www.xxx.cn/job        | 2019-08-04 16:30:20  |
    | 192.168.33.4   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  |
    | 192.168.33.44  | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  |
    | 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  |
    | 192.168.33.46  | http://www.xxx.cn/job        | 2019-08-05 16:30:20  |
    | 192.168.33.5   | http://www.xxx.cn/job        | 2019-08-04 15:40:20  |
    | 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  |
    | 192.168.34.44  | http://www.xxx.cn/pay        | 2019-08-06 15:30:20  |
    | 192.168.44.3   | http://www.xxx.cn/teach      | 2019-08-05 15:35:20  |
    +----------------+------------------------------+----------------------+--+
    
    
    求8月4号以后,每天http://www.xxx.cn/job的总访问次数,及访问者中ip地址中最大的
    select dt,'http://www.xxx.cn/job',count(1),max(ip)
    from t_pv
    where url='http://www.xxx.cn/job'
    group by dt having dt>'2019-08-04';
    
    
    select dt,max(url),count(1),max(ip)
    from t_pv
    where url='http://www.xxx.cn/job'
    group by dt having dt>'2019-08-04';
    
    
    select dt,url,count(1),max(ip)
    from t_pv
    where url='http://www.xxx.cn/job'
    group by dt,url having dt>'2019-08-04';
    
    
    
    select dt,url,count(1),max(ip)
    from t_pv
    where url='http://www.xxx.cn/job' and dt>'2019-08-04'
    group by dt,url;
    
    
    求8月4号以后,每天每个页面的总访问次数,及访问者中ip地址中最大的
    select dt,url,count(1),max(ip)
    from t_pv
    where dt>'2019-08-04'
    group by dt,url;
    
    
    求8月4号以后,每天每个页面的总访问次数,及访问者中ip地址中最大的,且只查询出总访问次数>2 的记录
    • 方式1:
    select dt,url,count(1) as cnts,max(ip)
    from t_pv
    where dt>'2019-08-04'
    group by dt,url having cnts>2;
    
    • 方式2:用子查询
    select dt,url,cnts,max_ip
    from
    (select dt,url,count(1) as cnts,max(ip) as max_ip
    from t_pv
    where dt>'2019-08-04'
    group by dt,url) tmp
    where cnts>2;
    

    5 基本数据类型

    5.1 数字类型

    • TINYINT (1-byte signed integer, from -128 to 127)

    • SMALLINT (2-byte signed integer, from -32,768 to 32,767)

    • INT/INTEGER (4-byte signed integer, from -2,147,483,648 to 2,147,483,647)

    • BIGINT (8-byte signed integer, from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

    • FLOAT (4-byte single precision floating point number)

    • DOUBLE (8-byte double precision floating point number)

    示例:

    create table t_test(a string ,b int,c bigint,d float,e double,f tinyint,g smallint)
    
    

    5.2 日期类型

    • TIMESTAMP (Note: Only available starting with Hive 0.8.0)
    • DATE (Note: Only available starting with Hive 0.12.0)

    示例,假如有以下数据文件:

    1,zhangsan,1985-06-30
    2,lisi,1986-07-10
    3,wangwu,1985-08-09
    

    那么,就可以建一个表来对数据进行映射

    create table t_customer(id int,name string,birthday date)
    row format delimited fields terminated by ',';
    
    

    然后导入数据

    load data local inpath '/root/customer.dat' into table t_customer;
    
    

    然后,就可以正确查询

    5.3 字符串类型

    • STRING
    • VARCHAR (Note: Only available starting with Hive 0.12.0)
    • CHAR (Note: Only available starting with Hive 0.13.0)

    5.4 杂类型

    • BOOLEAN
    • BINARY (Note: Only available starting with Hive 0.8.0)

    5.5 复合类型

    5.5.1 数组类型

    有如下数据:

    玩具总动员4,汤姆·汉克斯:蒂姆·艾伦:安妮·波茨,2019-06-21
    流浪地球,屈楚萧:吴京:李光洁:吴孟达,2019-02-05
    千与千寻,柊瑠美:入野自由:夏木真理:菅原文太,2019-06-21
    战狼2,吴京:弗兰克·格里罗:吴刚:张翰:卢靖姗,2017-08-16
    

    建表导入数据:

    --建表映射:
    create table t_movie(movie_name string,actors array<string>,first_show date)
    row format delimited fields terminated by ','
    collection items terminated by ':';
    
    --导入数据
    load data local inpath '/home/hadoop/actor.dat' into table t_movie;
    
    
    0: jdbc:hive2://Master:10000> select * from t_movie;
    +---------------------+-----------------------------------+---------------------+--+
    | t_movie.movie_name  |          t_movie.actors           | t_movie.first_show  |
    +---------------------+-----------------------------------+---------------------+--+
    | 玩具总动员4              | ["汤姆·汉克斯","蒂姆·艾伦","安妮·波茨"]        | 2019-06-21          |
    | 流浪地球                | ["屈楚萧","吴京","李光洁","吴孟达"]          | 2019-02-05          |
    | 千与千寻                | ["柊瑠美","入野自由","夏木真理","菅原文太"]      | 2019-06-21          |
    | 战狼2                 | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"]  | 2017-08-16          |
    +---------------------+-----------------------------------+---------------------+--+
    
    
    array[]
    查询每部电影主演
    select movie_name,actors[0],first_show from t_movie;
    
    0: jdbc:hive2://Master:10000> select movie_name,actors[0],first_show from t_movie;
    +-------------+---------+-------------+--+
    | movie_name  |   _c1   | first_show  |
    +-------------+---------+-------------+--+
    | 玩具总动员4      | 汤姆·汉克斯  | 2019-06-21  |
    | 流浪地球        | 屈楚萧     | 2019-02-05  |
    | 千与千寻        | 柊瑠美     | 2019-06-21  |
    | 战狼2         | 吴京      | 2017-08-16  |
    +-------------+---------+-------------+--+
    
    
    array_contains
    查询包含'吴京'的电影
    select movie_name,actors,first_show
    from t_movie where array_contains(actors,'吴京');
    
    
    0: jdbc:hive2://Master:10000> select movie_name,actors,first_show
    0: jdbc:hive2://Master:10000> from t_movie where array_contains(actors,'吴京');
    +-------------+-----------------------------------+-------------+--+
    | movie_name  |              actors               | first_show  |
    +-------------+-----------------------------------+-------------+--+
    | 流浪地球        | ["屈楚萧","吴京","李光洁","吴孟达"]          | 2019-02-05  |
    | 战狼2         | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"]  | 2017-08-16  |
    +-------------+-----------------------------------+-------------+--+
    
    size
    每部电影查询列出的演员数量
    select movie_name
    ,size(actors) as actor_number
    ,first_show
    from t_movie;
    
    0: jdbc:hive2://Master:10000> from t_movie;
    +-------------+---------------+-------------+--+
    | movie_name  | actor_number  | first_show  |
    +-------------+---------------+-------------+--+
    | 玩具总动员4      | 3             | 2019-06-21  |
    | 流浪地球        | 4             | 2019-02-05  |
    | 千与千寻        | 4             | 2019-06-21  |
    | 战狼2         | 5             | 2017-08-16  |
    +-------------+---------------+-------------+--+
    

    5.5.2 map类型

    数据
    1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
    2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
    3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
    4,mayun,father:mayongzhen#mother:angelababy,26
    

    导入数据

    -- 建表映射上述数据
    create table t_family(id int,name string,family_members map<string,string>,age int)
    row format delimited fields terminated by ','
    collection items terminated by '#'
    map keys terminated by ':';
    
    -- 导入数据
    load data local inpath '/root/hivetest/fm.dat' into table t_family;
    
    0: jdbc:hive2://Master:10000> select * from t_family;
    +--------------+----------------+----------------------------------------------------------------+---------------+--+
    | t_family.id  | t_family.name  |                    t_family.family_members                     | t_family.age  |
    +--------------+----------------+----------------------------------------------------------------+---------------+--+
    | 1            | zhangsan       | {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"}  | 28            |
    | 2            | lisi           | {"father":"mayun","mother":"huangyi","brother":"guanyu"}       | 22            |
    | 3            | wangwu         | {"father":"wangjianlin","mother":"ruhua","sister":"jingtian"}  | 29            |
    | 4            | mayun          | {"father":"mayongzhen","mother":"angelababy"}                  | 26            |
    +--------------+----------------+----------------------------------------------------------------+---------------+--+
    
    查出每个人的 爸爸、姐妹
    select id,name,family_members["father"] as father,family_members["sister"] as sister,age
    from t_family;
    
    查出每个人有哪些亲属关系
    select id,name,map_keys(family_members) as relations,age
    from  t_family;
    
    查出每个人的亲人名字
    select id,name,map_values(family_members) as relations,age
    from  t_family;
    
    查出每个人的亲人数量
    select id,name,size(family_members) as relations,age
    from  t_family;
    
    查出所有拥有兄弟的人及他的兄弟是谁
    -- 方案1:一句话写完
    select id,name,age,family_members['brother']
    from t_family  where array_contains(map_keys(family_members),'brother');
    
    
    -- 方案2:子查询
    select id,name,age,family_members['brother']
    from
    (select id,name,age,map_keys(family_members) as relations,family_members 
    from t_family) tmp 
    where array_contains(relations,'brother');
    
    

    5.5.3 stuct类型

    数据

    1,zhangsan,18:male:深圳
    2,lisi,28:female:北京
    3,wangwu,38:male:广州
    4,laowang,26:female:上海
    5,yangyang,35:male:杭州
    

    导入数据:

    
    -- 建表映射上述数据
    
    drop table if exists t_user;
    create table t_user(id int,name string,info struct<age:int,sex:string,addr:string>)
    row format delimited fields terminated by ','
    collection items terminated by ':';
    
    -- 导入数据
    load data local inpath '/home/hadoop/user.dat' into table t_user;
    
    
    0: jdbc:hive2://Master:10000> select * from t_user;
    +------------+--------------+----------------------------------------+--+
    | t_user.id  | t_user.name  |              t_user.info               |
    +------------+--------------+----------------------------------------+--+
    | 1          | zhangsan     | {"age":18,"sex":"male","addr":"深圳"}    |
    | 2          | lisi         | {"age":28,"sex":"female","addr":"北京"}  |
    | 3          | wangwu       | {"age":38,"sex":"male","addr":"广州"}    |
    | 4          | laowang      | {"age":26,"sex":"female","addr":"上海"}  |
    | 5          | yangyang     | {"age":35,"sex":"male","addr":"杭州"}    |
    +------------+--------------+----------------------------------------+--+
    
    查询每个人的id name和地址
    select id,name,info.addr
    from t_user;
    
    0: jdbc:hive2://Master:10000> select id,name,info.addr
    0: jdbc:hive2://Master:10000> from t_user;
    +-----+-----------+-------+--+
    | id  |   name    | addr  |
    +-----+-----------+-------+--+
    | 1   | zhangsan  | 深圳    |
    | 2   | lisi      | 北京    |
    | 3   | wangwu    | 广州    |
    | 4   | laowang   | 上海    |
    | 5   | yangyang  | 杭州    |
    +-----+-----------+-------+--+
    

    6 常用内置函数

    测试函数

    select substr("abcdef",1,3);
    
    
    0: jdbc:hive2://Master:10000> select substr("abcdef",1,3);
    +------+--+
    | _c0  |
    +------+--+
    | abc  |
    +------+--+
    

    6.1 时间处理函数

    from_unixtime(21938792183,'yyyy-MM-dd HH:mm:ss') 
    
    

    返回: '2017-06-03 17:50:30'

    6.2 类型转换函数

    select cast("8" as int);
    select cast("2019-2-3" as data)
    

    6.3 字符串截取和拼接

    substr("abcde",1,3)  -->   'abc'
    concat('abc','def')  -->  'abcdef'
    
    0: jdbc:hive2://Master:10000> select substr("abcde",1,3);
    +------+--+
    | _c0  |
    +------+--+
    | abc  |
    +------+--+
    1 row selected (0.152 seconds)
    0: jdbc:hive2://Master:10000> select concat('abc','def');
    +---------+--+
    |   _c0   |
    +---------+--+
    | abcdef  |
    +---------+--+
    1 row selected (0.165 seconds)
    

    6.4 Json数据解析函数

    get_json_object('{"key1":3333,"key2":4444}' , '$.key1') 
    
    

    返回:3333

    json_tuple('{"key1":3333,"key2":4444}','key1','key2') as(key1,key2)
    
    

    返回:3333, 4444

    6.5 url解析函数

    parse_url_tuple('http://www.xxxx.cn/bigdata?userid=8888','HOST','PATH','QUERY','QUERY:userid')
    
    

    返回: www.xxxx.cn /bigdata userid=8888 8888

    7 自定义函数

    7.1 问题

    测试数据如下:

    1,zhangsan:18-1999063117:30:00-beijing
    2,lisi:28-1989063117:30:00-shanghai
    3,wangwu:20-1997063117:30:00-tieling
    
    

    建表导入数据:

    create table t_user_info(info string)
    row format delimited;
    
    

    导入数据:

    load data local inpath '/root/udftest.data' into table t_user_info;
    
    

    需求:利用上表生成如下新表

    t_user:uid,uname,age,birthday,address
    
    

    思路:可以自定义一个函数parse_user_info(),能传入一行上述数据,返回切分好的字段

    然后可以通过如下sql完成需求:

    create t_user
    as
    select 
    parse_user_info(info,0) as uid,
    parse_user_info(info,1) as uname,
    parse_user_info(info,2) as age,
    parse_user_info(info,3) as birthday_date,
    parse_user_info(info,4) as birthday_time,
    parse_user_info(info,5) as address
    from t_user_info;
    

    实现关键: 自定义parse_user_info() 函数

    7.2 实现步骤

    1、写一个java类实现函数所需要的功能

    public class UserInfoParser extends UDF{	
    	// 1,zhangsan:18-1999063117:30:00-beijing
    	public String evaluate(String line,int index) {
    		String newLine = line.replaceAll(",", "01").replaceAll(":", "01").replaceAll("-", "01");
    		StringBuilder sb = new StringBuilder();
    		String[] split = newLine.split("01");
    		StringBuilder append = sb.append(split[0])
    		.append("	")
    		.append(split[1])
    		.append("	")
    		.append(split[2])
    		.append("	")
    		.append(split[3].substring(0, 8))
    		.append("	")
    		.append(split[3].substring(8, 10)).append(split[4]).append(split[5])
    		.append("	")
    		.append(split[6]);
    		
    		String res = append.toString();
    
    		return res.split("	")[index];
    	}
    }
    

    2、将java类打成jar包: d:/up.jar

    3、上传jar包到hive所在的机器上 /root/up.jar

    4、在hive的提示符中添加jar包

    hive>  add jar /root/up.jar;
    
    

    5、创建一个hive的自定义函数名 跟 写好的jar包中的java类对应

    hive>  create temporary function parse_user_info as 'com.doit.hive.udf.UserInfoParser';
    
    
  • 相关阅读:
    exynos4412—CMU裸板复习
    有道云笔记markdown插入图片
    win10自带输入法提交所有中文输入的问题
    【wp】i春秋百度杯CTF比赛2016年12月场writeup
    【wp】百度杯2017年春秋欢乐赛
    【python】为markdown自动生成目录
    【C】MSP432P401R手动实现呼吸灯斗艳
    【python】django实现扫码签到
    【python】观影时定时自动截图
    程序片段
  • 原文地址:https://www.cnblogs.com/foochane/p/11110493.html
Copyright © 2020-2023  润新知