• Tensorflow笔记(基础):池化函数


    code

    # - * - coding: utf - 8 -*-
    #
    # 作者:田丰(FontTian)
    # 创建时间:'2017/8/3'
    # 邮箱:fonttian@Gmaill.com
    # CSDN:http://blog.csdn.net/fontthrone
    #
    import tensorflow as tf
    import os
    import numpy as np
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    #
    input_data = tf.Variable(np.random.rand(10, 9, 9, 3), dtype=np.float32)
    filter_data = tf.Variable(np.random.rand(2, 2, 3, 2), dtype=np.float32)
    y = tf.nn.conv2d(input_data, filter_data, strides=[1, 1, 1, 1], padding='SAME')
    print('0. tf.nn.conv2d : ', y)
    
    # 计算池化区域中元素的平均值
    output = tf.nn.avg_pool(value=y, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME')
    print('1. tf.nn.avg_pool : ', output)
    
    # 计算池化区域中元素的最大值
    output = tf.nn.max_pool(value=y, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME')
    print('2. tf.nn.max_pool : ', output)
    
    # 计算池化区域中元素的最大值,与最大值所在位置
    # 1.1.0似乎只支持GPU,本代码首测运行于 python3.6.2 + Tensorflow(CPU) 1.2.0 + win10
    output, argmax = tf.nn.max_pool_with_argmax(input=y, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME')
    print('2.5 . tf.nn.max_pool : ', output, argmax)
    
    # 与conv2d_transpose 二维反卷积类似
    # 在解卷积网络(deconvolutional network) 中有时被称为'反卷积',但实际上是conv3d的转置,而不是实际的反卷积
    input_data = tf.Variable(np.random.rand(1, 2, 5, 5, 1), dtype=np.float32)
    filters = tf.Variable(np.random.rand(2, 3, 3, 1, 3), dtype=np.float32)
    y = tf.nn.conv3d(input_data, filters, strides=[1, 2, 2, 1, 1], padding='SAME')
    print('3. tf.nn.conv3d : ', y)
    
    # 计算三维下池化区域中元素的平均值
    output = tf.nn.avg_pool3d(input=y, ksize=[1, 1, 2, 2, 1], strides=[1, 2, 2, 1, 1], padding='SAME')
    print('4. tf.nn.avg_pool3d : ', output)
    
    # 计算三维下池化区域中元素的最大值
    output = tf.nn.max_pool3d(input=y, ksize=[1, 1, 2, 2, 1], strides=[1, 2, 2, 1, 1], padding='SAME')
    print('5. tf.nn.max_pool3d : ', output)
    
    # 执行一个N维的池化操作
    # def pool(input, window_shape,pooling_type,padding,dilation_rate=None,strides=None,name=None,data_format=None):
    

    run

    0. tf.nn.conv2d :  Tensor("Conv2D:0", shape=(10, 9, 9, 2), dtype=float32)
    1. tf.nn.avg_pool :  Tensor("AvgPool:0", shape=(10, 9, 9, 2), dtype=float32)
    2. tf.nn.max_pool :  Tensor("MaxPool:0", shape=(10, 9, 9, 2), dtype=float32)
    2.5 . tf.nn.max_pool :  Tensor("MaxPoolWithArgmax:0", shape=(10, 9, 9, 2), dtype=float32) Tensor("MaxPoolWithArgmax:1", shape=(10, 9, 9, 2), dtype=int64)
    3. tf.nn.conv3d :  Tensor("Conv3D:0", shape=(1, 1, 3, 5, 3), dtype=float32)
    4. tf.nn.avg_pool3d :  Tensor("AvgPool3D:0", shape=(1, 1, 2, 5, 3), dtype=float32)
    5. tf.nn.max_pool3d :  Tensor("MaxPool3D:0", shape=(1, 1, 2, 5, 3), dtype=float32)
  • 相关阅读:
    Poj 2104 K-th Number(主席树&&整体二分)
    Bzoj 3262: 陌上花开(CDQ分治)
    Bzoj 2683: 简单题(CDQ分治)
    ZOJ2314 Reactor Cooling(无源汇上下界可行流)
    Cogs 12. 运输问题2(有上下界的有源汇最大流)
    Cogs 461. [网络流24题] 餐巾(费用流)
    Codevs 1227 方格取数 2(费用流)
    Cogs 13. 运输问题4(费用流)
    Poj 2195 Going Home(费用流)
    开学第二测
  • 原文地址:https://www.cnblogs.com/fonttian/p/7294791.html
Copyright © 2020-2023  润新知