• Android消息机制


    概述

      Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃,因为在ViewRootImpl.checkThread对UI操作做了验证,导致必须在主线程中访问UI,但Android在主线程中进行耗时的操作会导致ANR,为了解决子线程无法访问UI的矛盾,提供了消息机制。

    void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }
    

      Android消息机制主要指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MQ即消息队列,存储消息的单元,但并不能处理消息,这时需要Looper,它会无限循环查找是否有新消息,有即处理消息,没有就等待。
    Handler的创建方式很简单,只需要new一个实例即可,但是当前线程中没有Looper而创建Handler就会导致报错,下面来看下两个Handler的创建过程,看看有什么不一样。

    private Handler handler1;
    private Handler handler2;
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        handler1 = new Handler();
        new Thread(new Runnable() {
            @Override
            public void run() {
                handler2 = new Handler();
            }
        }).start();
    }
    
    

      运行下会发现handler2会报下面的错误“Can't create handler inside thread that has not called Looper.prepare()”

    11-14 11:51:56.591 5751-5769/com.fomin.demo E/AndroidRuntime: FATAL EXCEPTION: Thread-642
        Process: com.fomin.demo, PID: 5751
        java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()
            at android.os.Handler.<init>(Handler.java:200)
            at android.os.Handler.<init>(Handler.java:114)
            at com.fomin.demo.MainActivity$1.run(MainActivity.java:20)
            at java.lang.Thread.run(Thread.java:818)
    
    

      为什么handler1没有报错呢?因为Handler的创建时会采用当前线程的Looper来构建内部的消息循环系统,而handler1是在主线程创建的,而主线程已经默认调用Looper.prepareMainLooper()创建Looper,所以handler2创建时需要先调用Looper.prepare()创建Looper。

      接下来看下整个Handler的处理流程并且会具体分析下ThreadLocal、Handler、MessageQueue和Looper,如图:
    图片

    ThreadLocal工作原理

      ThreadLocal是一个线程内部的的数据存储类,通过它可以在指定的线程中存储数据,存储以后,也只能在指定的线程中获取存储数据,对于其他线程来说则无法获取到数据。在Handler中,需要获取当前的线程的Looper,而Looper作用域就是线程并且不同线程具有不同的Looper,使用ThreadLocal可以轻松实现Looper在线程中的存取。
      先看一个例子,分别在主线程、线程1和线程2设置和访问它的值,如下:

    private ThreadLocal<Boolean> mBooleanThreadLocal = new ThreadLocal<>();
    Log.d(TAG, "Current Thread: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());
    new Thread("Thread#1") {
        @Override
        public void run() {
            mBooleanThreadLocal.set(false);
            Log.d(TAG, "Thread 1: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());
    
        }
    }.start();
    
    new Thread("Thread#2") {
        @Override
        public void run() {
            Log.d(TAG, "Thread 2: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());
        }
    }.start();
    

      运行程序,日志如下:

    11-14 14:18:41.731 7754-7754/com.fomin.demo D/MainActivity: Current Thread: mBooleanThreadLocal is : true
    11-14 14:18:41.731 7754-7807/com.fomin.demo D/MainActivity: Thread 1: mBooleanThreadLocal is : false
    11-14 14:18:41.731 7754-7808/com.fomin.demo D/MainActivity: Thread 2: mBooleanThreadLocal is : null
    

      日志可以看出,不同线程访问同一个ThreadLocal对象,但是他们的值是不一样的。因为ThreadLocal会从各自的线程中取出一个数据,然后数组根据当前ThreadLocal的索引去查找对应的value值。可以先看下ThreadLocal的set方法:

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    

      在看下get方法

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
    

      ThreadLocal的get和set方法操作的对象都是当前线程ThreadLocalMap,读写操作仅限于各自线程的内部。这也是为什么ThreadLocal在多个线程中互不干扰的操作。

    MessageQueue工作原理

      MessageQueue只有两个操作:插入和读取。其内部是一个单链表的数据结构来维护消息列表,链表的节点就是 Message。它提供了 enqueueMessage() 来进行插入新的消息,提供next() 从链表中取出消息,值得注意的是next()会循环地从链表中取出 Message 交给 Handler,但如果链表为空的话会阻塞这个方法,直到有新消息到来。

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

      enqueueMessage主要操作就是单链表的插入操作,在看下next方法

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
    
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            ...
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
    
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
    

      next方法是一个无线信息的方法,如果消息队列没有消息,会一直阻塞在这里。

    Looper工作原理

      Looper在Android的消息机制中扮演着消息循环的角色,它不停从MessageQueue查看是否有新消息,有会立即处理,否则会一直阻塞在那里。
    Looper会在构造方法中构建一个MessageQueue和当前线程对象。

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    

      Looper提供了两个退出方法quit和quitSafely,区别是前个是直接退出,后一个把消息队列中已有的消息处理完毕后安全退出,均是调用MessageQueue中退出quit方法。

    public void quit() {
        mQueue.quit(false);
    }
    public void quitSafely() {
        mQueue.quit(true);
    }
    
    
    void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                return;
            }
            mQuitting = true;
    
            if (safe) {
                removeAllFutureMessagesLocked();
            } else {
                removeAllMessagesLocked();
            }
    
            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }
    

      Looper最重要的方法是loop方法,只有调用了loop后,消息系统才会真正的起作用,具体代码如下

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
    
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
    
        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);
    
        boolean slowDeliveryDetected = false;
    
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
    
            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
    
            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
    
            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;
    
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
    
            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }
    
            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
    
            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
    
            msg.recycleUnchecked();
        }
    }
    

      loop方法是一个死循环,唯一跳出就是next返回null。如果next返回了新消息,会调用msg.target.dispatchMessage(msg)处理消息(即Handler处理)。

    Handler工作原理

      Handler的工作主要包含消息的发送和接收过程。消息发送通过post系列方法和send系列方法来实现,而post最终还是调用sendMessageAtTime方法来实现发送消息。

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    

      可以发现,发送消息最终只是在向消息队列中插入了一条消息,流程MessageQueue——>Looper——>Handler,最终在dispatchMessage处理,由handleMessage消费。

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    
  • 相关阅读:
    使用Ant自动化发布web工程
    分页过滤SQL求总条数SQL正则
    Spark-Java版本WordCount示例
    Apache-Tika解析Word文档
    Apache-Tika解析JPEG文档
    Apache-Tika解析HTML文档
    Apache-Tika解析XML文档
    Apache-Tika解析Excell文档
    @RestController注解的使用
    @ResponseBody注解的使用
  • 原文地址:https://www.cnblogs.com/fomin/p/9958190.html
Copyright © 2020-2023  润新知