• 水木-机器学习推荐论文和书籍


    发信人: zibuyu (得之我幸), 信区: NLP 
    标 题: 机器学习推荐论文和书籍 
    发信站: 水木社区 (Thu Oct 30 21:00:39 2008), 站内 
    我们组内某小神童师弟通读论文,拟了一个机器学习的推荐论文和书籍列表。 
    经授权发布在这儿,希望对大家有用。:) 
    ====================================== 
    基本模型: 
    HMM(Hidden Markov Models): 
    A Tutorial on Hidden Markov Models and Selected Applications in 
    Speech Recognition.pdf 
    ME(Maximum Entropy): 
    ME_to_NLP.pdf 
    MEMM(Maximum Entropy Markov Models): 
    memm.pdf 
    CRF(Conditional Random Fields): 
    An Introduction to Conditional Random Fields for Relational Learning.pdf 
    Conditional Random Fields: Probabilistic Models for Segmenting and 
    Labeling Sequence Data.pdf 
    SVM(support vector machine): 
    *张学工<<统计学习理论>> 
    LSA(or LSI)(Latent Semantic Analysis): 
    Latent semantic analysis.pdf 
    pLSA(or pLSI)(Probablistic Latent Semantic Analysis): 
    Probabilistic Latent Semantic Analysis.pdf 
    LDA(Latent Dirichlet Allocation): 
    Latent Dirichlet Allocaton.pdf(用variational theory + EM算法解模型) 
    Parameter estimation for text analysis.pdf(using Gibbs Sampling 解模) 
    Neural Networksi(including Hopfield Model& self-organizing maps & 
    Stochastic networks & Boltzmann Machine etc.): 
    Neural Networks - A Systematic Introduction 
    Diffusion Networks: 
    Diffusion Networks, Products of Experts, and Factor Analysis.pdf 
    Markov random fields: 
    Generalized Linear Model(including logistic regression etc.): 
    An introduction to Generalized Linear Models 2nd 
    Chinese Restraunt Model (Dirichlet Processes): 
    Dirichlet Processes, Chinese Restaurant Processes and all that.pdf 
    Estimating a Dirichlet Distribution.pdf 
    ================================================================= 
    Some important algorithms: 
    EM(Expectation Maximization): 
    Expectation Maximization and Posterior Constraints.pdf 
    Maximum Likelihood from Incomplete Data via the EM Algorithm.pdf 
    MCMC(Markov Chain Monte Carlo) & Gibbs Sampling: 
    Markov Chain Monte Carlo and Gibbs Sampling.pdf 
    Explaining the Gibbs Sampler.pdf 
    An introduction to MCMC for Machine Learning.pdf 
    PageRank: 
    矩阵分解算法: 
    SVD, QR分解, Shur分解, LU分解, 谱分解 
    Boosting( including Adaboost): 
    *adaboost_talk.pdf 
    Spectral Clustering: 
    Tutorial on spectral clustering.pdf 
    Energy-Based Learning: 
    A tutorial on Energy-based learning.pdf 
    Belief Propagation: 
    Understanding Belief Propagation and its Generalizations.pdf 
    bp.pdf 
    Construction free energy approximation and generalized belief 
    propagation algorithms.pdf 
    Loopy Belief Propagation for Approximate Inference An Empirical Study.pdf 
    Loopy Belief Propagation.pdf 
    AP (affinity Propagation): 
    L-BFGS: 
    <<最优化理论与算法 2nd>> chapter 10 
    On the limited memory BFGS method for large scale optimization.pdf 
    IIS: 
    IIS.pdf 
    ================================================================= 
    理论部分: 
    概率图(probabilistic networks): 
    An introduction to Variational Methods for Graphical Models.pdf 
    Probabilistic Networks 
    Factor Graphs and the Sum-Product Algorithm.pdf 
    Constructing Free Energy Approximations and Generalized Belief 
    Propagation Algorithms.pdf 
    *Graphical Models, exponential families, and variational inference.pdf 
    Variational Theory(变分理论,我们只用概率图上的变分): 
    Tutorial on varational approximation methods.pdf 
    A variational Bayesian framework for graphical models.pdf 
    variational tutorial.pdf 
    Information Theory: 
    Elements of Information Theory 2nd.pdf 
    测度论: 
    测度论(Halmos).pdf 
    测度论讲义(严加安).pdf 
    概率论: 
    ...... 
    <<概率与测度论>> 
    随机过程: 
    应用随机过程 林元烈 2002.pdf 
    <<随机数学引论>> 
    Matrix Theory: 
    矩阵分析与应用.pdf 
    模式识别: 
    <<模式识别 2nd>> 边肇祺 
    *Pattern Recognition and Machine Learning.pdf 
    最优化理论: 
    <
    <<最优化理论与算法>> 
    泛函分析: 
    <<泛函分析导论及应用>> 
    Kernel理论: 
    <<模式分析的核方法>> 
    统计学: 
    ...... 
    <<统计手册>> 
    ========================================================== 
    综合: 
    semi-supervised learning: 
    <> MIT Press 
    semi-supervised learning based on Graph.pdf 
    Co-training: 
    Self-training:

  • 相关阅读:
    Container With Most Water 容器最大水容量
    socket阻塞IO流程图
    python模块time,random,os
    python生成器表达式yield,面向过程编程,部分内置函数
    python装饰器作业
    Python函数闭包装饰器
    Python函数参数,名称空间与作用域
    Linux基础3
    Linux基础2
    linux基础1
  • 原文地址:https://www.cnblogs.com/focus-ml/p/3755315.html
Copyright © 2020-2023  润新知