• TensorFlow实现线性回归


    from __future__ import print_function
    import tensorflow as tf
    import numpy
    import matplotlib.pyplot as plt
    
    rng = numpy.random
    # Parameters
    # 模型的超参数
    # 学习率
    learning_rate = 0.01
    # 训练迭代次数
    training_epochs = 1000
    display_step = 50
    # 模拟生成的一段训练数据
    # Training Data
    train_X = numpy.asarray([3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
                             7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1])
    train_Y = numpy.asarray([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
                             2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3])
    # train_X的长度
    n_samples = train_X.shape[0]
    # 占位符
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    # 随机权重和偏置
    W = tf.Variable(rng.randn(), name="weight")
    b = tf.Variable(rng.randn(), name="bias")
    # 决策函数
    pred = tf.add(tf.multiply(X, W), b)
    # 损失函数
    cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)
    # 优化方法
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    # 模型参数初始化
    init = tf.initialize_all_variables()
    # 创建计算图
    with tf.Session() as sess:
        sess.run(init)
        # 迭代训练循环
        for epoch in range(training_epochs):
            for (x, y) in zip(train_X, train_Y):
                # feed_dict将数据放入模型
                sess.run(optimizer, feed_dict={X: x, Y: y})
    
            # 每隔50次显示一下损失函数的值
            if (epoch + 1) % display_step == 0:
                c = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    
                print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c), 
                      "W=", sess.run(W), "b=", sess.run(b))
    
        ###############
        print("Optimization Finished!")
        # 训练结束时,显示最终损失函数的值
        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
        print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '
    ')
        # 用matplotlib生成一幅图
        plt.plot(train_X, train_Y, 'ro', label='Original data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
        # 生成一段测试文件
        test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
        test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
    
        print("Testing... (Mean square loss Comparison)")
        # 用训练好的参数根据test_x预测对应的y
        testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
                                feed_dict={X: test_X, Y: test_Y})
        
        print("Testing cost=", testing_cost)
        # 比较一下训练的损失函数值和测试损失函数值
        print("Absolute mean square loss difference:", abs(training_cost - testing_cost))
        
        plt.plot(test_X, test_Y, 'bo', label='Testing data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
    
    
    

    结果

    Epoch: 0050 cost= 0.157032505 W= 0.4078232 b= -0.33682635
    Epoch: 0100 cost= 0.147781506 W= 0.3984126 b= -0.2691267
    Epoch: 0150 cost= 0.139598981 W= 0.3895616 b= -0.20545363
    Epoch: 0200 cost= 0.132361546 W= 0.38123706 b= -0.14556733
    Epoch: 0250 cost= 0.125960082 W= 0.37340772 b= -0.08924285
    Epoch: 0300 cost= 0.120298132 W= 0.3660438 b= -0.03626821
    Epoch: 0350 cost= 0.115290195 W= 0.35911795 b= 0.013555876
    Epoch: 0400 cost= 0.110860869 W= 0.352604 b= 0.060416616
    Epoch: 0450 cost= 0.106943212 W= 0.34647754 b= 0.10449031
    Epoch: 0500 cost= 0.103478260 W= 0.34071538 b= 0.1459427
    Epoch: 0550 cost= 0.100413688 W= 0.33529598 b= 0.18492968
    Epoch: 0600 cost= 0.097703241 W= 0.33019873 b= 0.22159818
    Epoch: 0650 cost= 0.095306024 W= 0.32540485 b= 0.25608563
    Epoch: 0700 cost= 0.093185902 W= 0.320896 b= 0.28852215
    Epoch: 0750 cost= 0.091310821 W= 0.31665528 b= 0.31902957
    Epoch: 0800 cost= 0.089652546 W= 0.3126668 b= 0.347722
    Epoch: 0850 cost= 0.088185944 W= 0.30891564 b= 0.37470827
    Epoch: 0900 cost= 0.086888909 W= 0.30538744 b= 0.40008995
    Epoch: 0950 cost= 0.085741922 W= 0.30206922 b= 0.42396098
    Epoch: 1000 cost= 0.084727496 W= 0.29894808 b= 0.44641364
    Optimization Finished!
    Training cost= 0.084727496 W= 0.29894808 b= 0.44641364

  • 相关阅读:
    Swoole 协程使用示例及协程优先级
    Swoole 协程简介
    Laravel Redis分布式锁的使用
    Laravel Redis分布式锁实现源码分析
    Swoole 中使用异步任务
    runtime相关面试
    oc笔试题
    属性关键字面试题
    KVC面试题
    KVO面试题
  • 原文地址:https://www.cnblogs.com/flylinmu/p/10289467.html
Copyright © 2020-2023  润新知