• 为什么工程中都喜欢用红黑树,而不是其他平衡二叉查找树呢?


    前言

      二叉查找树是最常用的一种二叉树,它支持快速插入、删除、查找操作,各个操作的时间复杂度跟树的高度成正比,理想情况下,时间复杂度是O(logn)

      不过,二叉查找树在频繁的动态更新过程中,可能会出现树的高度远大于log2n 的情况,从而导致各个操作的效率下降。极端情况下,二叉树会退化为链表,时间复杂度会退化到 O(n)。我上一节说了,要解决这个复杂度退化的问题,我们需要设计一种平衡二叉查找树

    1 平衡二叉树定义

      平衡二叉树的严格定义是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于 1。平衡二叉查找树不仅满足定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是AVL树。它严格符合平衡二叉查找树的定义,是一种高度平衡的二叉查找树。

      但是很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于 1),比如红黑树,它从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。

      发明平衡二叉查找树这类数据结构的初衷是,解决普通二叉查找树在频繁的插入、删除等动态更新的情况下,出现时间复杂度退化的问题。

      所以,平衡二叉查找树中“平衡”的意思,其实就是让整棵树左右看起来比较“对称”、比较“平衡”,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。

      所以,如果我们现在设计一个新的平衡二叉查找树,只要树的高度不比 log2n 大很多(比如树的高度仍然是对数量级的),尽管它不符合我们前面讲的严格的平衡二叉查找树的定义,但我们仍然可以说,这是一个合格的平衡二叉查找树。

    2 如何定义一颗“红黑树”

      红黑树的英文是“Red-Black Tree”,简称 R-B Tree。它是一种不严格的平衡二叉查找树。红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:

    • 根节点是黑色的;
    • 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
    • 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
    • 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;

        如果要证明红黑树是近似平衡的,我们只需要分析,红黑树的高度是否比较稳定地趋近 log2n 就好了。

      首先,我们来看,如果我们将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢?

      红色节点删除之后,有些节点就没有父节点了,它们会直接拿这些节点的祖父节点(父节点的父节点)作为父节点。所以,之前的二叉树就变成了四叉树

      前面红黑树的定义里有这么一条:从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。我们从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。所以,仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小。

      完全二叉树的高度近似 log2n,这里的四叉“黑树”的高度要低于完全二叉树,所以去掉红色节点的“黑树”的高度也不会超过 log2n。

      现在把红色节点加回去,高度会变成多少呢?

      从上面我画的红黑树的例子和定义看,在红黑树中,红色节点不能相邻,也就是说,有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。红黑树中包含最多黑色节点的路径不会超过 log2n,所以加入红色节点之后,最长路径不会超过 2log2n,也就是说,红黑树的高度近似 2log2n。

      所以,红黑树的高度只比高度平衡的 AVL 树的高度(log2n)仅仅大了一倍,在性能上,下降得并不多。这样推导出来的结果不够精确,实际上红黑树的性能更好。

    解答开题

      我们前面提到 Treap、Splay Tree都是平衡二叉树,绝大部分情况下,它们操作的效率都很高,但是也无法避免极端情况下时间复杂度的退化。尽管这种情况出现的概率不大,但是对于单次操作时间非常敏感的场景来说,它们并不适用。

      AVL 树是一种高度平衡的二叉树,所以查找的效率非常高,但是,有利就有弊,AVL 树为了维持这种高度的平衡,就要付出更多的代价。每次插入、删除都要做调整,就比较复杂、耗时。所以,对于有频繁的插入、删除操作的数据集合,使用 AVL 树的代价就有点高了。

      红黑树只是做到了近似平衡,并不是严格的平衡,所以在维护平衡的成本上,要比 AVL 树要低。

      所以,红黑树的插入、删除、查找各种操作性能都比较稳定。对于工程应用来说,要面对各种异常情况,为了支撑这种工业级的应用,我们更倾向于这种性能稳定的平衡二叉查找树。

      因为红黑树是一种性能非常稳定的二叉查找树,所以,在工程中,但凡是用到动态插入、删除、查找数据的场景,都可以用到它。不过,它实现起来比较复杂,如果自己写代码实现,难度会有些高,这个时候,我们其实更倾向用跳表来替代它。

    总结

      红黑树是一个让我又爱又恨的数据结构,“爱”是因为它稳定、高效的性能,“恨”是因为实现起来实在太难了。

      学习红黑树的代码实现,对于平时做项目开发没有太大帮助。对于绝大部分开发工程师来说,这辈子可能都用不着亲手写一个红黑树。除此之外,它对于算法面试也几乎没什么用,一般情况下,靠谱的面试官也不会让你手写红黑树的。

  • 相关阅读:
    Merge Intervals
    Merge k Sorted Lists
    Sqrt(x)
    First Missing Positive
    Construct Binary Tree from Inorder and Postorder Traversal
    Construct Binary Tree from Preorder and Inorder Traversal
    Distinct Subsequences
    Reverse Nodes in k-Group
    Jump Game II
    Jump Game
  • 原文地址:https://www.cnblogs.com/flyingrun/p/13444375.html
Copyright © 2020-2023  润新知