• 9 ROS amcl(导航与定位)


    博客转自:https://blog.csdn.net/hcx25909/article/details/12110959

    在理解了move_base的基础上,我们开始机器人的定位与导航。gmaping包是用来生成地图的,需要使用实际的机器人获取激光或者深度数据,所以我们先在已有的地图上进行导航与定位的仿真。 amcl是移动机器人二维环境下的概率定位系统。它实现了自适应(或KLD采样)的蒙特卡罗定位方法,其中针对已有的地图使用粒子滤波器跟踪一个机器人的姿态。

    一、测试

    首先运行机器人节点:

    roslaunch rbx1_bringup fake_turtlebot.launch
    

    然后运行amcl节点,使用测试地图:

    roslaunch rbx1_nav fake_amcl.launch map:=test_map.yaml
    

    可以看一下fake_amcl.launch这个文件的内容:

    <launch>
      <!-- Set the name of the map yaml file: can be overridden on the command line. -->
      <arg name="map" default="test_map.yaml" />
      <!-- Run the map server with the desired map -->
      <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/$(arg map)"/>
      <!-- The move_base node -->
      <include file="$(find rbx1_nav)/launch/fake_move_base.launch" />
      
      <!-- Run fake localization compatible with AMCL output -->
      <node pkg="fake_localization" type="fake_localization"  name="fake_localization" output="screen" />
      <!-- For fake localization we need static transforms between /odom and /map and /map and /world -->
      <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster" 
    args="0 0 0 0 0 0 /odom /map 100" />
    </launch>
    

    这个lanuch文件作用是加载地图,并且调用fake_move_base.launch文件打开move_base节点并加载配置文件,最后运行amcl。 然后运行rviz:

    rosrun rviz rviz -d `rospack find rbx1_nav`/nav_fuerte.vcg
    

    indigo/kinetic

    rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz
    

    这时在rviz中就应该显示出了地图和机器人:

    现在就可以通过rviz在地图上选择目标位置了,然后就会看到机器人自动规划出一条全局路径,并且导航前进: 

    二、自主导航 

    在实际应用中,我们往往希望机器人能够自主进行定位和导航,不需要认为的干预,这样才更智能化。在这一节的测试中,我们让目标点在地图中随机生成,然后机器人自动导航到达目标。 这里运行的主要文件是:fake_nav_test.launch,让我们来看一下这个文件的内容:   

    <launch>
    
      <param name="use_sim_time" value="false" />
    
      <!-- Start the ArbotiX controller -->
      <include file="$(find rbx1_bringup)/launch/fake_turtlebot.launch" />
    
      <!-- Run the map server with the desired map -->
      <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/test_map.yaml"/>
    
      <!-- The move_base node -->
      <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
        <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="global_costmap" />
        <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="local_costmap" />
        <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml" command="load" />
        <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml" command="load" />
        <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml" command="load" />
        <rosparam file="$(find rbx1_nav)/config/nav_test_params.yaml" command="load" />
      </node>
      
      <!-- Run fake localization compatible with AMCL output -->
      <node pkg="fake_localization" type="fake_localization" name="fake_localization" output="screen" />
      
      <!-- For fake localization we need static transform between /odom and /map -->
      <node pkg="tf" type="static_transform_publisher" name="map_odom_broadcaster" args="0 0 0 0 0 0 /map /odom 100" />
      
      <!-- Start the navigation test -->
      <node pkg="rbx1_nav" type="nav_test.py" name="nav_test" output="screen">
        <param name="rest_time" value="1" />
        <param name="fake_test" value="true" />
      </node>
      
    </launch>
    

    这个lanuch的功能比较多:

    1. 加载机器人驱动
    2. 加载地图
    3. 启动move_base节点,并且加载配置文件
    4. 运行amcl节点
    5. 然后加载nav_test.py执行文件,进行随机导航

    相当于是把我们之前实验中的多个lanuch文件合成了一个文件。现在开始进行测试,先运行ROS:

    roscore
    

     然后我们运行一个监控的窗口,可以实时看到机器人发送的数据:

    rxconsole
    

     接着运行lanuch文件,并且在一个新的终端中打开rviz:

    roslaunch rbx1_nav fake_nav_test.launch
    rosrun rviz rviz -d `rospack find rbx1_nav`/nav_test_fuerte.vcg
    

    indigo/kinetic

    //todo

    好了,此时就看到了机器人已经放在地图当中了。然后我们点击rviz上的“2D Pose Estimate”按键,然后左键在机器人上单击,让绿色的箭头和黄色的箭头重合,机器人就开始随机选择目标导航了:

     在监控窗口中,我们可以看到机器人发送的状态信息:

    其中包括距离信息、状态信息、目标的编号、成功率和速度等信息。

    三、导航代码分析

    #!/usr/bin/env python
    
    import roslib; roslib.load_manifest('rbx1_nav')
    import rospy
    import actionlib
    from actionlib_msgs.msg import *
    from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
    from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
    from random import sample
    from math import pow, sqrt
    
    class NavTest():
        def __init__(self):
            rospy.init_node('nav_test', anonymous=True)
            
            rospy.on_shutdown(self.shutdown)
            
            # How long in seconds should the robot pause at each location?
            # 在每个目标位置暂停的时间
            self.rest_time = rospy.get_param("~rest_time", 10)
            
            # Are we running in the fake simulator?
            # 是否仿真?
            self.fake_test = rospy.get_param("~fake_test", False)
            
            # Goal state return values
            # 到达目标的状态
            goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED', 
                           'SUCCEEDED', 'ABORTED', 'REJECTED',
                           'PREEMPTING', 'RECALLING', 'RECALLED',
                           'LOST']
            
            # Set up the goal locations. Poses are defined in the map frame.  
            # An easy way to find the pose coordinates is to point-and-click
            # Nav Goals in RViz when running in the simulator.
            # Pose coordinates are then displayed in the terminal
            # that was used to launch RViz.
            # 设置目标点的位置
            # 如果想要获得某一点的坐标,在rviz中点击 2D Nav Goal 按键,然后单机地图中一点
            # 在终端中就会看到坐标信息
            locations = dict()
            
            locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000), Quaternion(0.000, 0.000, 0.223, 0.975))
            locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000), Quaternion(0.000, 0.000, -0.670, 0.743))
            locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000), Quaternion(0.000, 0.000, 0.733, 0.680))
            locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000), Quaternion(0.000, 0.000, 0.786, 0.618))
            locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000), Quaternion(0.000, 0.000, 0.480, 0.877))
            locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000), Quaternion(0.000, 0.000, 0.892, -0.451))
            
            # Publisher to manually control the robot (e.g. to stop it)
            # 发布控制机器人的消息
            self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist)
            
            # Subscribe to the move_base action server
            # 订阅move_base服务器的消息
            self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
            
            rospy.loginfo("Waiting for move_base action server...")
            
            # Wait 60 seconds for the action server to become available
            # 60s等待时间限制
            self.move_base.wait_for_server(rospy.Duration(60))
            
            rospy.loginfo("Connected to move base server")
            
            # A variable to hold the initial pose of the robot to be set by 
            # the user in RViz
            # 保存机器人的在rviz中的初始位置
            initial_pose = PoseWithCovarianceStamped()
            
            # Variables to keep track of success rate, running time,
            # and distance traveled
            # 保存成功率、运行时间、和距离的变量
            n_locations = len(locations)
            n_goals = 0
            n_successes = 0
            i = n_locations
            distance_traveled = 0
            start_time = rospy.Time.now()
            running_time = 0
            location = ""
            last_location = ""
            
            # Get the initial pose from the user
            # 获取初始位置(仿真中可以不需要)
            rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...")
            rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
            self.last_location = Pose()
            rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
            
            # Make sure we have the initial pose
            # 确保有初始位置
            while initial_pose.header.stamp == "":
                rospy.sleep(1)
                
            rospy.loginfo("Starting navigation test")
            
            # Begin the main loop and run through a sequence of locations
            # 开始主循环,随机导航
            while not rospy.is_shutdown():
                # If we've gone through the current sequence,
                # start with a new random sequence
                # 如果已经走完了所有点,再重新开始排序
                if i == n_locations:
                    i = 0
                    sequence = sample(locations, n_locations)
                    # Skip over first location if it is the same as
                    # the last location
                    # 如果最后一个点和第一个点相同,则跳过
                    if sequence[0] == last_location:
                        i = 1
                
                # Get the next location in the current sequence
                # 在当前的排序中获取下一个目标点
                location = sequence[i]
                            
                # Keep track of the distance traveled.
                # Use updated initial pose if available.
                # 跟踪形式距离
                # 使用更新的初始位置
                if initial_pose.header.stamp == "":
                    distance = sqrt(pow(locations[location].position.x - 
                                        locations[last_location].position.x, 2) +
                                    pow(locations[location].position.y - 
                                        locations[last_location].position.y, 2))
                else:
                    rospy.loginfo("Updating current pose.")
                    distance = sqrt(pow(locations[location].position.x - 
                                        initial_pose.pose.pose.position.x, 2) +
                                    pow(locations[location].position.y - 
                                        initial_pose.pose.pose.position.y, 2))
                    initial_pose.header.stamp = ""
                
                # Store the last location for distance calculations
                # 存储上一次的位置,计算距离
                last_location = location
                
                # Increment the counters
                # 计数器加1
                i += 1
                n_goals += 1
            
                # Set up the next goal location
                # 设定下一个目标点
                self.goal = MoveBaseGoal()
                self.goal.target_pose.pose = locations[location]
                self.goal.target_pose.header.frame_id = 'map'
                self.goal.target_pose.header.stamp = rospy.Time.now()
                
                # Let the user know where the robot is going next
                # 让用户知道下一个位置
                rospy.loginfo("Going to: " + str(location))
                
                # Start the robot toward the next location
                # 向下一个位置进发
                self.move_base.send_goal(self.goal)
                
                # Allow 5 minutes to get there
                # 五分钟时间限制
                finished_within_time = self.move_base.wait_for_result(rospy.Duration(300)) 
                
                # Check for success or failure
                # 查看是否成功到达
                if not finished_within_time:
                    self.move_base.cancel_goal()
                    rospy.loginfo("Timed out achieving goal")
                else:
                    state = self.move_base.get_state()
                    if state == GoalStatus.SUCCEEDED:
                        rospy.loginfo("Goal succeeded!")
                        n_successes += 1
                        distance_traveled += distance
                        rospy.loginfo("State:" + str(state))
                    else:
                      rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))
                
                # How long have we been running?
                # 运行所用时间
                running_time = rospy.Time.now() - start_time
                running_time = running_time.secs / 60.0
                
                # Print a summary success/failure, distance traveled and time elapsed
                # 输出本次导航的所有信息
                rospy.loginfo("Success so far: " + str(n_successes) + "/" + 
                              str(n_goals) + " = " + 
                              str(100 * n_successes/n_goals) + "%")
                rospy.loginfo("Running time: " + str(trunc(running_time, 1)) + 
                              " min Distance: " + str(trunc(distance_traveled, 1)) + " m")
                rospy.sleep(self.rest_time)
                
        def update_initial_pose(self, initial_pose):
            self.initial_pose = initial_pose
    
        def shutdown(self):
            rospy.loginfo("Stopping the robot...")
            self.move_base.cancel_goal()
            rospy.sleep(2)
            self.cmd_vel_pub.publish(Twist())
            rospy.sleep(1)
          
    def trunc(f, n):
        # Truncates/pads a float f to n decimal places without rounding
        slen = len('%.*f' % (n, f))
        return float(str(f)[:slen])
    
    if __name__ == '__main__':
        try:
            NavTest()
            rospy.spin()
        except rospy.ROSInterruptException:
            rospy.loginfo("AMCL navigation test finished.")
    

      

  • 相关阅读:
    NHibernate初学二之简单执行SQL及HQL、Linq
    Socket通信常用方法
    Android中自定义属性的使用
    四种常见的 POST 提交数据方式
    关于 Content-Type:application/x-www-form-urlencoded 和 Content-Type:multipart/related
    1、memcache的守护进程启动方式(2017-8-10)
    c++封装简单日志操作
    关于vector的内存释放
    Linux进程通信-共享内存
    Linux进程通信总结
  • 原文地址:https://www.cnblogs.com/flyinggod/p/12736468.html
Copyright © 2020-2023  润新知