• C++位运算


    前言  
      看到有些人对位运算还存在问题,于是决定写这篇文章作个简要说明。  
       
      什么是位(bit)?  
       
     很简单,位(bit)就是单个的0或1,位是我们在计算机上所作一切的基础。计算机上的所有数据都是用位来存储的。一个字节(BYTE)由八个位组成,一个字(WORD)是二个字节或十六位,一个双字(DWORD)是二个字(WORDS)或三十二位。如下所示:  
       
          0   1   0   0   0   1   1   1   1   0   0   0   0   1   1   1   0   1   1   1   0   1   0   0   0   1   1   1   1   0   0   0  
      |   |                             |                               |                               |                             |   |  
      |   +-   bit   31             |                               |                               |               bit   0   -+   |  
      |                                 |                               |                               |                                 |  
      +--   BYTE   3   ----   -+----   BYTE   2   ---+----   BYTE   1   ---+---   BYTE   0   -----+  
      |                                                                 |                                                                 |  
      +------------   WORD   1   ------------+-----------   WORD   0   -------------+  
      |                                                                                                                                   |  
      +-----------------------------   DWORD   -----------------------------+  
       
     使用位运算的好处是可以将BYTE,   WORD   或   DWORD   作为小数组或结构使用。通过位运算可以检查位的值或赋值,也可以对整组的位进行运算。  
       
      16进制数及其与位的关系  
      用0或1表示的数值就是二进制数,很难理解。因此用到16进制数。  
       
      16进制数用4个位表示0   -   15的值,4个位组成一个16进制数。也把4位成为半字节(nibble)。一个BYTE有二个nibble,因此可以用二个16进制数表示一个BYTE。如下所示:  
       
      NIBBLE       HEX   VALUE  
      ======       =========  
        0000                 0  
        0001                 1  
        0010                 2  
        0011                 3  
        0100                 4  
        0101                 5  
        0110                 6  
        0111                 7  
        1000                 8  
        1001                 9  
        1010                 A  
        1011                 B  
        1100                 C  
        1101                 D  
        1110                 E  
        1111                 F  
       
      如果用一个字节存放字母"r"(ASCII码114),结果是:  
      0111   0010         二进制  
          7         2           16进制  
       
      可以表达为:'0x72'  
       
      有6种位运算:  
            &       与运算  
            |       或运算  
            ^       异或运算  
            ~       非运算(求补)  
          >>       右移运算  
          <<       左移运算  
       
      与运算(&)  
      双目运算。二个位都置位(等于1)时,结果等于1,其它的结果都等于0。  
            1       &       1       ==       1  
            1       &       0       ==       0  
            0       &       1       ==       0  
            0       &       0       ==       0  
       
      与运算的一个用途是检查指定位是否置位(等于1)。例如一个BYTE里有标识位,要检查第4位是否置位,代码如下:  
       
      BYTE   b   =   50;  
      if   (   b   &   0x10   )  
              cout   <<   "Bit   four   is   set"   <<   endl;  
      else  
              cout   <<   "Bit   four   is   clear"   <<   endl;  
       
      上述代码可表示为:  
       
              00110010     -   b  
          &   00010000     -   &   0x10  
        ----------------------------  
              00010000     -   result  
       
      可以看到第4位是置位了。  
       
      或运算(   |   )  
      双目运算。二个位只要有一个位置位,结果就等于1。二个位都为0时,结果为0。  
            1       |       1       ==       1  
            1       |       0       ==       1  
            0       |       1       ==       1  
            0       |       0       ==       0  
       
      与运算也可以用来检查置位。例如要检查某个值的第3位是否置位:  
       
      BYTE   b   =   50;  
      BYTE   c   =   b   |   0x04;  
      cout   <<   "c   =   "   <<   c   <<   endl;  
       
      可表达为:  
       
              00110010     -   b  
          |   00000100     -   |   0x04  
          ----------  
              00110110     -   result  
       
      异或运算(^)  
      双目运算。二个位不相等时,结果为1,否则为0。  
       
            1       ^       1       ==       0  
            1       ^       0       ==       1  
            0       ^       1       ==       1  
            0       ^       0       ==       0  
       
      异或运算可用于位值翻转。例如将第3位与第4位的值翻转:  
       
      BYTE   b   =   50;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
      b   =   b   ^   0x18;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
      b   =   b   ^   0x18;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
       
      可表达为:  
       
              00110010     -   b  
          ^   00011000     -   ^0x18  
          ----------  
              00101010     -   result  
       
              00101010     -   b  
          ^   00011000     -   ^0x18  
          ----------  
              00110010     -   result  
       
      非运算(~)  
      单目运算。位值取反,置0为1,或置1为0。非运算的用途是将指定位清0,其余位置1。非运算与数值大小无关。例如将第1位和第2位清0,其余位置1:  
       
      BYTE   b   =   ~0x03;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
      WORD   w   =   ~0x03;  
      cout   <<   "w   =   "   <<   w   <<   endl;  
       
      可表达为:  
       
              00000011     -   0x03  
              11111100     -   ~0x03     b  
       
              0000000000000011     -   0x03  
              1111111111111100     -   ~0x03     w  
       
      非运算和与运算结合,可以确保将指定为清0。如将第4位清0:  
       
      BYTE   b   =   50;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
      BYTE   c   =   b   &   ~0x10;  
      cout   <<   "c   =   "   <<   c   <<   endl;  
       
      可表达为:  
       
              00110010     -   b  
          &   11101111     -   ~0x10  
          ----------  
              00100010     -   result  
       
      移位运算(>>   与   <<)  
      将位值向一个方向移动指定的位数。右移   >>   算子从高位向低位移动,左移   <<   算子从低位向高位移动。往往用位移来对齐位的排列(如MAKEWPARAM,   HIWORD,   LOWORD   宏的功能)。  
       
      BYTE   b   =   12;  
      cout   <<   "b   =   "   <<   b   <<   endl;  
      BYTE   c   =   b   <<   2;  
      cout   <<   "c   =   "   <<   c   <<   endl;  
      c   =   b   >>   2;  
      cout   <<   "c   =   "   <<   c   <<   endl;  
       
      可表达为:  
              00001100     -   b  
              00110000     -   b   <<   2  
              00000011     -   b   >>   2  
       
      译注:以上示例都对,但举例用法未必恰当。请阅文末链接的文章,解释得较为清楚。  
       
      位域(Bit   Field)  
     位操作中的一件有意义的事是位域。利用位域可以用BYTE,   WORD或DWORD来创建最小化的数据结构。例如要保存日期数据,并尽可能减少内存占用,就可以声明这样的结构:  
       
      struct   date_struct   {  
              BYTE       day       :   5,       //   1   to   31  
                            month   :   4,       //   1   to   12  
                            year     :   14;     //   0   to   9999  
              }date;  
               
      在结构中,日期数据占用最低5位,月份占用4位,年占用14位。这样整个日期数据只需占用23位,即3个字节。忽略第24位。如果用整数来表达各个域,整个结构要占用12个字节。  
       
      |   0   0   0   0   0   0   0   0   |   0   0   0   0   0   0   0   0   |   0   0   0   0   0   0   0   0   |  
            |                                                           |                   |                     |  
            +-------------   year   --------------+   month+--   day   --+  
       
      现在分别看看在这个结构声明中发生了什么  
       
      首先看一下位域结构使用的数据类型。这里用的是BYTE。1个BYTE有8个位,编译器将分配1个BYTE的内存。如果结构内的数据超过8位,编译器就再分配1个BYTE,直到满足数据要求。如果用WORD或DWORD作结构的数据类型,编译器就分配一个完整的32位内存给结构。  
       
      其次看一下域声明。变量(day,   month,   year)名跟随一个冒号,冒号后是变量占用的位数。位域之间用逗号分隔,用分号结束。  
       
      使用了位域结构,就可以方便地象处理普通结构数据那样处理成员数据。尽管我们无法得到位域的地址,却可以使用结构地址。例如:  
      date.day   =   12;  
      dateptr   =   &date;  
      dateptr->year   =   1852;
    我最擅长从零开始创造世界,所以从来不怕失败,它最多也就让我一无所有。
  • 相关阅读:
    程序员要善于在工作中找到偷懒的办法
    关于count(1) 和 count(*)
    前端设计+程序开发那点事
    关于MySQL Connector/C++那点事儿
    windows下编译php5.2.17这是闹哪样?
    easyui使用时出现这个Uncaught TypeError: Cannot read property 'combo' of undefined
    视频文件自动转rtsp流
    Jenkins Pipeline如何动态的并行任务
    Jenkins的Dockerfile中如何批量迁移原Jenkins安装的插件
    Groovy中json的一些操作
  • 原文地址:https://www.cnblogs.com/flying_bat/p/1224178.html
Copyright © 2020-2023  润新知