• netty系列之:HashedWheelTimer一种定时器的高效实现


    简介

    定时器是一种在实际的应用中非常常见和有效的一种工具,其原理就是把要执行的任务按照执行时间的顺序进行排序,然后在特定的时间进行执行。JAVA提供了java.util.Timer和java.util.concurrent.ScheduledThreadPoolExecutor等多种Timer工具,但是这些工具在执行效率上面还是有些缺陷,于是netty提供了HashedWheelTimer,一个优化的Timer类。

    一起来看看netty的Timer有何不同吧。

    java.util.Timer

    Timer是JAVA在1.3中引入的。所有的任务都存储在它里面的TaskQueue中:

    private final TaskQueue queue = new TaskQueue();
    

    TaskQueue的底层是一个TimerTask的数组,用于存储要执行的任务。

    private TimerTask[] queue = new TimerTask[128];
    

    看起来TimerTask只是一个数组,但是Timer将这个queue做成了一个平衡二叉堆。

    当添加一个TimerTask的时候,会插入到Queue的最后面,然后调用fixup方法进行再平衡:

        void add(TimerTask task) {
            // Grow backing store if necessary
            if (size + 1 == queue.length)
                queue = Arrays.copyOf(queue, 2*queue.length);
    
            queue[++size] = task;
            fixUp(size);
        }
    

    当从heap中移出运行的任务时候,会调用fixDown方法进行再平衡:

        void removeMin() {
            queue[1] = queue[size];
            queue[size--] = null;  // Drop extra reference to prevent memory leak
            fixDown(1);
        }
    

    fixup的原理就是将当前的节点和它的父节点进行比较,如果小于父节点就和父节点进行交互,然后遍历进行这个过程:

        private void fixUp(int k) {
            while (k > 1) {
                int j = k >> 1;
                if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
                    break;
                TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
                k = j;
            }
        }
    

    fixDown的原理是比较当前节点和它的子节点,如果当前节点大于子节点,则将其降级:

        private void fixDown(int k) {
            int j;
            while ((j = k << 1) <= size && j > 0) {
                if (j < size &&
                    queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
                    j++; // j indexes smallest kid
                if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
                    break;
                TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
                k = j;
            }
        }
    

    二叉平衡堆的算法这里不做详细的介绍。大家可以自行查找相关的文章。

    java.util.concurrent.ScheduledThreadPoolExecutor

    虽然Timer已经很好用了,并且是线程安全的,但是对于Timer来说,想要提交任务的话需要创建一个TimerTask类,用来封装具体的任务,不是很通用。

    所以JDK在5.0中引入了一个更加通用的ScheduledThreadPoolExecutor,这是一个线程池使用多线程来执行具体的任务。当线程池中的线程个数等于1的时候,ScheduledThreadPoolExecutor就等同于Timer。

    ScheduledThreadPoolExecutor中进行任务保存的是一个DelayedWorkQueue。

    DelayedWorkQueue和DelayQueue,PriorityQueue一样都是一个基于堆的数据结构。

    因为堆需要不断的进行siftUp和siftDown再平衡操作,所以它的时间复杂度是O(log n)。

    下面是DelayedWorkQueue的shiftUp和siftDown的实现代码:

           private void siftUp(int k, RunnableScheduledFuture<?> key) {
                while (k > 0) {
                    int parent = (k - 1) >>> 1;
                    RunnableScheduledFuture<?> e = queue[parent];
                    if (key.compareTo(e) >= 0)
                        break;
                    queue[k] = e;
                    setIndex(e, k);
                    k = parent;
                }
                queue[k] = key;
                setIndex(key, k);
            }
    
            private void siftDown(int k, RunnableScheduledFuture<?> key) {
                int half = size >>> 1;
                while (k < half) {
                    int child = (k << 1) + 1;
                    RunnableScheduledFuture<?> c = queue[child];
                    int right = child + 1;
                    if (right < size && c.compareTo(queue[right]) > 0)
                        c = queue[child = right];
                    if (key.compareTo(c) <= 0)
                        break;
                    queue[k] = c;
                    setIndex(c, k);
                    k = child;
                }
                queue[k] = key;
                setIndex(key, k);
            }
    

    HashedWheelTimer

    因为Timer和ScheduledThreadPoolExecutor底层都是基于堆结构的。虽然ScheduledThreadPoolExecutor对Timer进行了改进,但是他们两个的效率是差不多的。

    那么有没有更加高效的方法呢?比如O(1)是不是可以达到呢?

    我们知道Hash可以实现高效的O(1)查找,想象一下假如我们有一个无限刻度的钟表,然后把要执行的任务按照间隔时间长短的顺序分配到这些刻度中,每当钟表移动一个刻度,即可以执行这个刻度中对应的任务,如下图所示:

    这种算法叫做Simple Timing Wheel算法。

    但是这种算法是理论上的算法,因为不可能为所有的间隔长度都分配对应的刻度。这样会耗费大量的无效内存空间。

    所以我们可以做个折中方案,将间隔时间的长度先用hash进行处理。这样就可以缩短间隔时间的基数,如下图所示:

    这个例子中,我们选择8作为基数,间隔时间除以8,余数作为hash的位置,商作为节点的值。

    每次遍历轮询的时候,将节点的值减一。当节点的值为0的时候,就表示该节点可以取出执行了。

    这种算法就叫做HashedWheelTimer。

    netty提供了这种算法的实现:

    public class HashedWheelTimer implements Timer 
    

    HashedWheelTimer使用HashedWheelBucket数组来存储具体的TimerTask:

    private final HashedWheelBucket[] wheel;
    

    首先来看下创建wheel的方法:

        private static HashedWheelBucket[] createWheel(int ticksPerWheel) {
            //ticksPerWheel may not be greater than 2^30
            checkInRange(ticksPerWheel, 1, 1073741824, "ticksPerWheel");
    
            ticksPerWheel = normalizeTicksPerWheel(ticksPerWheel);
            HashedWheelBucket[] wheel = new HashedWheelBucket[ticksPerWheel];
            for (int i = 0; i < wheel.length; i ++) {
                wheel[i] = new HashedWheelBucket();
            }
            return wheel;
        }
    

    我们可以自定义wheel中ticks的大小,但是ticksPerWheel不能超过2^30。

    然后将ticksPerWheel的数值进行调整,到2的整数倍。

    然后创建ticksPerWheel个元素的HashedWheelBucket数组。

    这里要注意,虽然整体的wheel是一个hash结构,但是wheel中的每个元素,也就是HashedWheelBucket是一个链式结构。

    HashedWheelBucket中的每个元素都是一个HashedWheelTimeout. HashedWheelTimeout中有一个remainingRounds属性用来记录这个Timeout元素还会在Bucket中保存多久。

    long remainingRounds;
    

    总结

    netty中的HashedWheelTimer可以实现更高效的Timer功能,大家用起来吧。

    更多内容请参考 http://www.flydean.com/50-netty-hashed-wheel-timer/

    最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

  • 相关阅读:
    angular4中引入quill editor
    rocketmq client for c#
    c#扩展出MapReduce方法
    用JS触发UpdatePanel里的TextBox的change事件局部刷新失败
    水晶报表中DisplayReverseSign的设置
    (转) SQL Server Merge的用法
    关于Java8 Stream的简单实用记录
    出现 java.math.BigInteger cannot be cast to java.lang.Long解决办法
    scala与spark配置浅谈
    HBase后续随笔
  • 原文地址:https://www.cnblogs.com/flydean/p/16394313.html
Copyright © 2020-2023  润新知