• Pandas高级教程之:处理text数据


    简介

    在1.0之前,只有一种形式来存储text数据,那就是object。在1.0之后,添加了一个新的数据类型叫做StringDtype 。今天将会给大家讲解Pandas中text中的那些事。

    创建text的DF

    先看下常见的使用text来构建DF的例子:

    In [1]: pd.Series(['a', 'b', 'c'])
    Out[1]: 
    0    a
    1    b
    2    c
    dtype: object
    

    如果要使用新的StringDtype,可以这样:

    In [2]: pd.Series(['a', 'b', 'c'], dtype="string")
    Out[2]: 
    0    a
    1    b
    2    c
    dtype: string
    
    In [3]: pd.Series(['a', 'b', 'c'], dtype=pd.StringDtype())
    Out[3]: 
    0    a
    1    b
    2    c
    dtype: string
    

    或者使用astype进行转换:

    In [4]: s = pd.Series(['a', 'b', 'c'])
    
    In [5]: s
    Out[5]: 
    0    a
    1    b
    2    c
    dtype: object
    
    In [6]: s.astype("string")
    Out[6]: 
    0    a
    1    b
    2    c
    dtype: string
    

    String 的方法

    String可以转换成大写,小写和统计它的长度:

    In [24]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'],
       ....:               dtype="string")
       ....: 
    
    In [25]: s.str.lower()
    Out[25]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5    <NA>
    6    caba
    7     dog
    8     cat
    dtype: string
    
    In [26]: s.str.upper()
    Out[26]: 
    0       A
    1       B
    2       C
    3    AABA
    4    BACA
    5    <NA>
    6    CABA
    7     DOG
    8     CAT
    dtype: string
    
    In [27]: s.str.len()
    Out[27]: 
    0       1
    1       1
    2       1
    3       4
    4       4
    5    <NA>
    6       4
    7       3
    8       3
    dtype: Int64
    

    还可以进行trip操作:

    In [28]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
    
    In [29]: idx.str.strip()
    Out[29]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
    
    In [30]: idx.str.lstrip()
    Out[30]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
    
    In [31]: idx.str.rstrip()
    Out[31]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
    

    columns的String操作

    因为columns是String表示的,所以可以按照普通的String方式来操作columns:

    In [34]: df.columns.str.strip()
    Out[34]: Index(['Column A', 'Column B'], dtype='object')
    
    In [35]: df.columns.str.lower()
    Out[35]: Index([' column a ', ' column b '], dtype='object')
    
    In [32]: df = pd.DataFrame(np.random.randn(3, 2),
       ....:                   columns=[' Column A ', ' Column B '], index=range(3))
       ....: 
    
    In [33]: df
    Out[33]: 
        Column A    Column B 
    0    0.469112   -0.282863
    1   -1.509059   -1.135632
    2    1.212112   -0.173215
    

    分割和替换String

    Split可以将一个String切分成一个数组。

    In [38]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'], dtype="string")
    
    In [39]: s2.str.split('_')
    Out[39]: 
    0    [a, b, c]
    1    [c, d, e]
    2         <NA>
    3    [f, g, h]
    dtype: object
    

    要想访问split之后数组中的字符,可以这样:

    In [40]: s2.str.split('_').str.get(1)
    Out[40]: 
    0       b
    1       d
    2    <NA>
    3       g
    dtype: object
    
    In [41]: s2.str.split('_').str[1]
    Out[41]: 
    0       b
    1       d
    2    <NA>
    3       g
    dtype: object
    

    使用 expand=True 可以 将split过后的数组 扩展成为多列:

    In [42]: s2.str.split('_', expand=True)
    Out[42]: 
          0     1     2
    0     a     b     c
    1     c     d     e
    2  <NA>  <NA>  <NA>
    3     f     g     h
    

    可以指定分割列的个数:

    In [43]: s2.str.split('_', expand=True, n=1)
    Out[43]: 
          0     1
    0     a   b_c
    1     c   d_e
    2  <NA>  <NA>
    3     f   g_h
    

    replace用来进行字符的替换,在替换过程中还可以使用正则表达式:

    s3.str.replace('^.a|dog', 'XX-XX ', case=False)
    

    String的连接

    使用cat 可以连接 String:

    In [64]: s = pd.Series(['a', 'b', 'c', 'd'], dtype="string")
    
    In [65]: s.str.cat(sep=',')
    Out[65]: 'a,b,c,d'
    

    使用 .str来index

    pd.Series会返回一个Series,如果Series中是字符串的话,可通过index来访问列的字符,举个例子:

    In [99]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
       ....:                'CABA', 'dog', 'cat'],
       ....:               dtype="string")
       ....: 
    
    In [100]: s.str[0]
    Out[100]: 
    0       A
    1       B
    2       C
    3       A
    4       B
    5    <NA>
    6       C
    7       d
    8       c
    dtype: string
    
    In [101]: s.str[1]
    Out[101]: 
    0    <NA>
    1    <NA>
    2    <NA>
    3       a
    4       a
    5    <NA>
    6       A
    7       o
    8       a
    dtype: string
    

    extract

    Extract用来从String中解压数据,它接收一个 expand参数,在0.23版本之前, 这个参数默认是False。如果是false,extract会返回Series,index或者DF 。如果expand=true,那么会返回DF。0.23版本之后,默认是true。

    extract通常是和正则表达式一起使用的。

    In [102]: pd.Series(['a1', 'b2', 'c3'],
       .....:           dtype="string").str.extract(r'([ab])(d)', expand=False)
       .....: 
    Out[102]: 
          0     1
    0     a     1
    1     b     2
    2  <NA>  <NA>
    

    上面的例子将Series中的每一字符串都按照正则表达式来进行分解。前面一部分是字符,后面一部分是数字。

    注意,只有正则表达式中group的数据才会被extract .

    下面的就只会extract数字:

    In [106]: pd.Series(['a1', 'b2', 'c3'],
       .....:           dtype="string").str.extract(r'[ab](d)', expand=False)
       .....: 
    Out[106]: 
    0       1
    1       2
    2    <NA>
    dtype: string
    

    还可以指定列的名字如下:

    In [103]: pd.Series(['a1', 'b2', 'c3'],
       .....:           dtype="string").str.extract(r'(?P<letter>[ab])(?P<digit>d)',
       .....:                                       expand=False)
       .....: 
    Out[103]: 
      letter digit
    0      a     1
    1      b     2
    2   <NA>  <NA>
    

    extractall

    和extract相似的还有extractall,不同的是extract只会匹配第一次,而extractall会做所有的匹配,举个例子:

    In [112]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"],
       .....:               dtype="string")
       .....: 
    
    In [113]: s
    Out[113]: 
    A    a1a2
    B      b1
    C      c1
    dtype: string
    
    In [114]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
    
    In [115]: s.str.extract(two_groups, expand=True)
    Out[115]: 
      letter digit
    A      a     1
    B      b     1
    C      c     1
    

    extract匹配到a1之后就不会继续了。

    In [116]: s.str.extractall(two_groups)
    Out[116]: 
            letter digit
      match             
    A 0          a     1
      1          a     2
    B 0          b     1
    C 0          c     1
    

    extractall匹配了a1之后还会匹配a2。

    contains 和 match

    contains 和 match用来测试DF中是否含有特定的数据:

    In [127]: pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
       .....:           dtype="string").str.contains(pattern)
       .....: 
    Out[127]: 
    0    False
    1    False
    2     True
    3     True
    4     True
    5     True
    dtype: boolean
    
    In [128]: pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
       .....:           dtype="string").str.match(pattern)
       .....: 
    Out[128]: 
    0    False
    1    False
    2     True
    3     True
    4    False
    5     True
    dtype: boolean
    
    In [129]: pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
       .....:           dtype="string").str.fullmatch(pattern)
       .....: 
    Out[129]: 
    0    False
    1    False
    2     True
    3     True
    4    False
    5    False
    dtype: boolean
    

    String方法总结

    最后总结一下String的方法:

    Method Description
    cat() Concatenate strings
    split() Split strings on delimiter
    rsplit() Split strings on delimiter working from the end of the string
    get() Index into each element (retrieve i-th element)
    join() Join strings in each element of the Series with passed separator
    get_dummies() Split strings on the delimiter returning DataFrame of dummy variables
    contains() Return boolean array if each string contains pattern/regex
    replace() Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence
    repeat() Duplicate values (s.str.repeat(3) equivalent to x * 3)
    pad() Add whitespace to left, right, or both sides of strings
    center() Equivalent to str.center
    ljust() Equivalent to str.ljust
    rjust() Equivalent to str.rjust
    zfill() Equivalent to str.zfill
    wrap() Split long strings into lines with length less than a given width
    slice() Slice each string in the Series
    slice_replace() Replace slice in each string with passed value
    count() Count occurrences of pattern
    startswith() Equivalent to str.startswith(pat) for each element
    endswith() Equivalent to str.endswith(pat) for each element
    findall() Compute list of all occurrences of pattern/regex for each string
    match() Call re.match on each element, returning matched groups as list
    extract() Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group
    extractall() Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group
    len() Compute string lengths
    strip() Equivalent to str.strip
    rstrip() Equivalent to str.rstrip
    lstrip() Equivalent to str.lstrip
    partition() Equivalent to str.partition
    rpartition() Equivalent to str.rpartition
    lower() Equivalent to str.lower
    casefold() Equivalent to str.casefold
    upper() Equivalent to str.upper
    find() Equivalent to str.find
    rfind() Equivalent to str.rfind
    index() Equivalent to str.index
    rindex() Equivalent to str.rindex
    capitalize() Equivalent to str.capitalize
    swapcase() Equivalent to str.swapcase
    normalize() Return Unicode normal form. Equivalent to unicodedata.normalize
    translate() Equivalent to str.translate
    isalnum() Equivalent to str.isalnum
    isalpha() Equivalent to str.isalpha
    isdigit() Equivalent to str.isdigit
    isspace() Equivalent to str.isspace
    islower() Equivalent to str.islower
    isupper() Equivalent to str.isupper
    istitle() Equivalent to str.istitle
    isnumeric() Equivalent to str.isnumeric
    isdecimal() Equivalent to str.isdecimal

    本文已收录于 http://www.flydean.com/06-python-pandas-text/

    最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

  • 相关阅读:
    TCP/IP协议总结(马士兵教育)
    socket和TCP/IP三次握手的对应关系
    VMWare中添加多个linux节点
    试题分析
    c#数据筛选和排序
    实现Windows程序的数据绑定
    实现Windows程序的数据更新
    使用ListView控件展示数据
    构建布局良好的Windows程序
    初识Windows程序
  • 原文地址:https://www.cnblogs.com/flydean/p/14921314.html
Copyright © 2020-2023  润新知