• Apache Hive代码阅读 SQL语句执行流程


    本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hive_hadoop_sql_simple_execute_src_read

    写一下Hive源码中执行SQL的SELECT语句的简单执行流程,手头没有具体的环境进调试模式,只根据源码写写大概的处理流程。

    总体上从beeline脚本执行,调用了类Beeline.java,将终端的命令读入后通过rpc发送给driver处理。driver调用SemanticAnalyzer将SQL语句编译为可以执行的tasks,然后给每个task创建一个线程执行,在task中调用Tez等并行框架处理。

    脚本执行

    以beeline脚本执行为例,跳了两个脚本后执行了etx/beeline.sh中的beeline()执行对应的java类。

    bin/beeline 脚本的执行会跳到 bin/hive 脚本,并传递service参数。

    # beeline 脚本
    
    bin=`dirname "$0"`
    bin=`cd "$bin"; pwd`
    
    . "$bin"/hive --service beeline "$@"
    

    在 bin/hive 脚本中,首先从$bin/ext/*.sh以及$bin/ext/util/*.sh目录下执行所有脚本,脚本中定了一个和service名相同的函数,并且把service名加入到SERVICE_LIST变量。然后根据SREVICE名称运行对应脚本中的函数。

    # bin/hive  省略了大部分代码
    
    SERVICE_LIST=""
    
    for i in "$bin"/ext/*.sh ; do
      . $i
    done
    
    for i in "$bin"/ext/util/*.sh ; do
      . $i
    done
    
    TORUN=""
    for j in $SERVICE_LIST ; do
      if [ "$j" = "$SERVICE" ] ; then
        TORUN=${j}$HELP
      fi
    done
    
    if [ "$TORUN" = "" ] ; then
      echo "Service $SERVICE not found"
      echo "Available Services: $SERVICE_LIST"
      exit 7
    else
      set -- "${SERVICE_ARGS[@]}"
      $TORUN "$@"
    fi
    

    对应执行bin/ext/beeline.sh中的beeline()函数。通过hadoop jar命令运行了java类org.apache.hive.beeline.BeeLine 。

    # bin/ext/beeline.sh
    
    THISSERVICE=beeline
    export SERVICE_LIST="${SERVICE_LIST}${THISSERVICE} "
    
    beeline () {
      CLASS=org.apache.hive.beeline.BeeLine;
    
      # include only the beeline client jar and its dependencies
      beelineJarPath=`ls ${HIVE_LIB}/hive-beeline-*.jar`
      superCsvJarPath=`ls ${HIVE_LIB}/super-csv-*.jar`
      jlineJarPath=`ls ${HIVE_LIB}/jline-*.jar`
      hadoopClasspath=""
      if [[ -n "${HADOOP_CLASSPATH}" ]]
      then
        hadoopClasspath="${HADOOP_CLASSPATH}:"
      fi
      export HADOOP_CLASSPATH="${hadoopClasspath}${HIVE_CONF_DIR}:${beelineJarPath}:${superCsvJarPath}:${jlineJarPath}"
      export HADOOP_CLIENT_OPTS="$HADOOP_CLIENT_OPTS -Dlog4j.configurationFile=beeline-log4j2.properties "
    
      exec $HADOOP jar ${beelineJarPath} $CLASS $HIVE_OPTS "$@"
    }
    
    beeline_help () {
      beeline "--help"
    } 
    

    cli端java代码执行逻辑

    总体上,java代码中不断读取输入的行,区分命令的类型后,将SQL语句通过Thrift的rpc发送给Thrift Server。

    Beeline.java类中按行读命令行后处理,根据每行开头的字符决定是作为beeline命令还是sql语句执行。

    while (!exit) {
      try {
        // Execute one instruction; terminate on executing a script if there is an error
        // in silent mode, prevent the query and prompt being echoed back to terminal
        String line = (getOpts().isSilent() && getOpts().getScriptFile() != null) ? reader
            .readLine(null, ConsoleReader.NULL_MASK) : reader.readLine(getPrompt());
    
        // trim line
        if (line != null) {
          line = line.trim();
        }
    
        if (!dispatch(line)) {
          lastExecutionResult = ERRNO_OTHER;
          if (exitOnError) break;
        } else if (line != null) {
          lastExecutionResult = ERRNO_OK;
        }
    
      } catch (Throwable t) {
        handleException(t);
        return ERRNO_OTHER;
      }
    }
    
    // ....
    // dispatch(line)函数中
    
    // isBeeLine标记运行为beeline模式还是兼容模式
      if (isBeeLine) {
        if (line.startsWith(COMMAND_PREFIX)) {
          // handle SQLLine command in beeline which starts with ! and does not end with ;
          return execCommandWithPrefix(line);
        } else {
          return commands.sql(line, getOpts().getEntireLineAsCommand());
        }
      } else {
        return commands.sql(line, getOpts().getEntireLineAsCommand());
      }
    

    在SQL语句的执行中,实现了java.sql包中的几个类,使用HiveConnection创建了HiveStatement,调用execute函数执行具体的操作。

    execute函数中,向服务器发送了sql语句后等待服务器回应,返回结果。runAsyncOnServer函数中实现了向服务器的发送,通过thrift库的rpc调用实现。

    // Beeline 正常调用
    InPlaceUpdateStream.EventNotifier eventNotifier =
        new InPlaceUpdateStream.EventNotifier();
    logThread = new Thread(createLogRunnable(stmnt, eventNotifier));
    logThread.setDaemon(true);
    logThread.start();
    if (stmnt instanceof HiveStatement) {
      HiveStatement hiveStatement = (HiveStatement) stmnt;
      hiveStatement.setInPlaceUpdateStream(
          new BeelineInPlaceUpdateStream(
              beeLine.getErrorStream(),
              eventNotifier
          ));
    }
    hasResults = stmnt.execute(sql);
    logThread.interrupt();
    logThread.join(DEFAULT_QUERY_PROGRESS_THREAD_TIMEOUT);
    
    
    // execute函数
    @Override
    public boolean execute(String sql) throws SQLException {
      runAsyncOnServer(sql);
      TGetOperationStatusResp status = waitForOperationToComplete();
    
      // The query should be completed by now
      if (!status.isHasResultSet() && !stmtHandle.isHasResultSet()) {
        return false;
      }
      resultSet =  new HiveQueryResultSet.Builder(this).setClient(client).setSessionHandle(sessHandle)
          .setStmtHandle(stmtHandle).setMaxRows(maxRows).setFetchSize(fetchSize)
          .setScrollable(isScrollableResultset)
          .build();
      return true;
    }
    
    
    private void runAsyncOnServer(String sql) throws SQLException {
      // ...
    
      TExecuteStatementReq execReq = new TExecuteStatementReq(sessHandle, sql);
      execReq.setRunAsync(true);
      execReq.setConfOverlay(sessConf);
      execReq.setQueryTimeout(queryTimeout);
      try {
        // client 是Thrift的模板编译出来的RPC client
        TExecuteStatementResp execResp = client.ExecuteStatement(execReq);
        Utils.verifySuccessWithInfo(execResp.getStatus());
        stmtHandle = execResp.getOperationHandle();
        isExecuteStatementFailed = false;
      } 
      // ... 
    }
    

    服务端的处理

    服务端的rpc调用通过CLIService类处理,调用了HiveSession,获取到SQLOperation对象后,传递给driver进行处理。

    RPC服务端的处理

    CLIService将SQL语句传递给driver。

    // CLIService.java
    
    /**
       * Execute statement on the server. This is a blocking call.
       */
      @Override
      public OperationHandle executeStatement(SessionHandle sessionHandle, String statement,
          Map<String, String> confOverlay) throws HiveSQLException {
        HiveSession session = sessionManager.getSession(sessionHandle);
        // need to reset the monitor, as operation handle is not available down stream, Ideally the
        // monitor should be associated with the operation handle.
        session.getSessionState().updateProgressMonitor(null);
        OperationHandle opHandle = session.executeStatement(statement, confOverlay);
        LOG.debug(sessionHandle + ": executeStatement()");
        return opHandle;
      }
    
    // HiveSessionImpl.java
      operation = getOperationManager().newExecuteStatementOperation(getSession(), statement,
          confOverlay, runAsync, queryTimeout);  // SQLOperation
      opHandle = operation.getHandle();
      operation.run();
      addOpHandle(opHandle);
      return opHandle;
    
    
    // SQLOperation.java
    @Override
    public void runInternal() throws HiveSQLException {
      setState(OperationState.PENDING);
    
      boolean runAsync = shouldRunAsync();
      final boolean asyncPrepare = runAsync
        && HiveConf.getBoolVar(queryState.getConf(),
          HiveConf.ConfVars.HIVE_SERVER2_ASYNC_EXEC_ASYNC_COMPILE);
      if (!asyncPrepare) {
        prepare(queryState);
      }
      if (!runAsync) {
        runQuery();
      } else {
        // 后面还是调用了runQuery()
        Runnable work = new BackgroundWork(getCurrentUGI(), parentSession.getSessionHive(),
            SessionState.getPerfLogger(), SessionState.get(), asyncPrepare);
        try {
          // This submit blocks if no background threads are available to run this operation
          Future<?> backgroundHandle = getParentSession().submitBackgroundOperation(work);
          setBackgroundHandle(backgroundHandle);
        } catch (RejectedExecutionException rejected) {
          setState(OperationState.ERROR);
          throw new HiveSQLException("The background threadpool cannot accept" +
              " new task for execution, please retry the operation", rejected);
        }
      }
    }
    
    // SQLOperation.java
    private void runQuery() throws HiveSQLException {
      try {
        OperationState opState = getStatus().getState();
        // Operation may have been cancelled by another thread
        if (opState.isTerminal()) {
          LOG.info("Not running the query. Operation is already in terminal state: " + opState
              + ", perhaps cancelled due to query timeout or by another thread.");
          return;
        }
        // In Hive server mode, we are not able to retry in the FetchTask
        // case, when calling fetch queries since execute() has returned.
        // For now, we disable the test attempts.
        driver.setTryCount(Integer.MAX_VALUE);
        response = driver.run();
      }
    }
    

    driver的SQL语句处理

    driver中在runInternal函数执行主要逻辑。主要执行了编译SQL语句、执行编译后的SQL计划、事务提交等操作。

    private CommandProcessorResponse runInternal(String command, boolean alreadyCompiled)
        throws CommandNeedRetryException {
    
      // ... 省略日志、容错、Hive事务、绑定的hook事件执行等细节
      int ret;
    
      // 编译SQL语句 ****** 
      ret = compileInternal(command, true);
    
      // 执行计划 ******
      ret = execute(true);
      if (ret != 0) {
        //if needRequireLock is false, the release here will do nothing because there is no lock
        return rollback(createProcessorResponse(ret));
      }
    
      // 事务提交 ******
      // if needRequireLock is false, the release here will do nothing because there is no lock
      try {
        if(txnManager.getAutoCommit() || plan.getOperation() == HiveOperation.COMMIT) {
          releaseLocksAndCommitOrRollback(true, null);
        }
        else if(plan.getOperation() == HiveOperation.ROLLBACK) {
          releaseLocksAndCommitOrRollback(false, null);
        }
        else {
          //txn (if there is one started) is not finished
        }
      } catch (LockException e) {
        return handleHiveException(e, 12);
      }
    }
    

    SQL语句编译和编译后执行过程

    // compileInternal()调用了compile()函数执行主要逻辑
    public int compile(String command, boolean resetTaskIds, boolean deferClose) {
      // ... 省略日志、容错、Hive事务、绑定的hook事件执行等细节
      try {
        // command should be redacted to avoid to logging sensitive data
        // 替换中间一些敏感的字符串,默认不配置
        queryStr = HookUtils.redactLogString(conf, command);
      } catch (Exception e) {
        LOG.warn("WARNING! Query command could not be redacted." + e);
      }
    
      // 解析为AST树 ******
      perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.PARSE);
      ASTNode tree = ParseUtils.parse(command, ctx);
      perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.PARSE);
    
      // 获取语义分析对象 ******
      perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.ANALYZE);
      BaseSemanticAnalyzer sem = SemanticAnalyzerFactory.get(queryState, tree);
      List<HiveSemanticAnalyzerHook> saHooks =
          getHooks(HiveConf.ConfVars.SEMANTIC_ANALYZER_HOOK,
              HiveSemanticAnalyzerHook.class);
    
      // 语义分析执行 ******
      // Do semantic analysis and plan generation
      if (saHooks != null && !saHooks.isEmpty()) {
        HiveSemanticAnalyzerHookContext hookCtx = new HiveSemanticAnalyzerHookContextImpl();
        hookCtx.setConf(conf);
        hookCtx.setUserName(userName);
        hookCtx.setIpAddress(SessionState.get().getUserIpAddress());
        hookCtx.setCommand(command);
        hookCtx.setHiveOperation(queryState.getHiveOperation());
        for (HiveSemanticAnalyzerHook hook : saHooks) {
          tree = hook.preAnalyze(hookCtx, tree);
        }
        // 分析 ******
        // SemanticAnalyzer中有默认的处理细节,一个文件里有上万行的代码,
        // 根据HiveParser中的关键字进行解析
        sem.analyze(tree, ctx);
        hookCtx.update(sem);
        for (HiveSemanticAnalyzerHook hook : saHooks) {
          hook.postAnalyze(hookCtx, sem.getAllRootTasks());
        }
      } else {
        sem.analyze(tree, ctx);
      }
      
      // validate the plan
      sem.validate();
    
      // get the output schema
      // 构建查询计划 ******
      schema = getSchema(sem, conf);
      plan = new QueryPlan(queryStr, sem, perfLogger.getStartTime(PerfLogger.DRIVER_RUN), queryId,
        queryState.getHiveOperation(), schema);
    }
    
    
    public int execute(boolean deferClose) throws CommandNeedRetryException {
      // ... 省略日志、容错、绑定的hook事件执行和一些细节
    
      // 获取MR tasks ******
      int mrJobs = Utilities.getMRTasks(plan.getRootTasks()).size();
      int jobs = mrJobs + Utilities.getTezTasks(plan.getRootTasks()).size()
          + Utilities.getSparkTasks(plan.getRootTasks()).size();
    
      // plan中有一个runnable的队列存所有tasks,把plan中rootTasks中的队列加入到runnable队列中
      // 每个task对应一个线程,在单独的run函数中执行具体逻辑 ******
      for (Task<? extends Serializable> tsk : plan.getRootTasks()) {
        // This should never happen, if it does, it's a bug with the potential to produce
        // incorrect results.
        assert tsk.getParentTasks() == null || tsk.getParentTasks().isEmpty();
        driverCxt.addToRunnable(tsk);
    
        if (metrics != null) {
          tsk.updateTaskMetrics(metrics);
        }
      }
    
      // Loop while you either have tasks running, or tasks queued up
      while (driverCxt.isRunning()) {
        // Launch upto maxthreads tasks
        Task<? extends Serializable> task;
        // 遍历runnable队列,每次从队列中取出一个task启动 ******
        while ((task = driverCxt.getRunnable(maxthreads)) != null) {
          TaskRunner runner = launchTask(task, queryId, noName, jobname, jobs, driverCxt);
          if (!runner.isRunning()) {
            break;
          }
        }
    
        // ...
      }
    }
    

    SemanticAnalyzer类中有具体的SQL语句解析的处理细节,一个文件里有上万行的代码,根据HiveParser中的关键字进行解析。对具体的细节思路没概念,忽略了细节。

    对任务提交到集群的具体的操作,在每个task内部执行。如Tez的并行分析任务,在TezTask类中调用了Tez库中的TezClient提交任务。

  • 相关阅读:
    Web.config Transformation Syntax for Web Application Project Deployment
    xcode 8.1 (8B62)真机调试配置
    主机与虚拟机互ping
    mac系统下安装mysql步骤
    iphone设备尺寸规格
    linux环境下oracle静默安装
    实现静默安装APK的方法
    mac系统下如何删除银行安全插件
    mac系统下设置eclipse的补全快捷键方法
    给Xcode增加复制行、删除行快捷键的方法
  • 原文地址:https://www.cnblogs.com/fly2wind/p/16386034.html
Copyright © 2020-2023  润新知