• TF Minest 构造神经网络


    简单的神经网络

    mnist = input_data.read_data_sets("data/", one_hot=True)
    
    # 参数设置
    numClasses = 10 # 输出10类
    inputSize = 784 # 784 个像素点
    numHiddenUnits = 50 # 隐藏层单元格数;把 784 个像素点,映射成 50 个新的特征
    trainingIterations = 10000 #  
    batchSize = 100 # 
    
    X = tf.placeholder(tf.float32, shape = [None, inputSize])
    y = tf.placeholder(tf.float32, shape = [None, numClasses])
    
    
    # 参数初始化
    W1 = tf.Variable(tf.truncated_normal([inputSize, numHiddenUnits], stddev=0.1))
    B1 = tf.Variable(tf.constant(0.1), [numHiddenUnits]) 
    
    W2 = tf.Variable(tf.truncated_normal([numHiddenUnits, numClasses], stddev=0.1))
    B2 = tf.Variable(tf.constant(0.1), [numClasses])
    
    # 网络结构
    hiddenLayerOutput = tf.matmul(X, W1) + B1
    hiddenLayerOutput = tf.nn.relu(hiddenLayerOutput)
    
    finalOutput = tf.matmul(hiddenLayerOutput, W2) + B2
    finalOutput = tf.nn.relu(finalOutput)
    
    # 网络迭代
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y, logits = finalOutput))  # 交叉熵损失
    opt = tf.train.GradientDescentOptimizer(learning_rate = .1).minimize(loss)
    
    correct_prediction = tf.equal(tf.argmax(finalOutput,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(trainingIterations):
        batch = mnist.train.next_batch(batchSize)
        batchInput = batch[0]
        batchLabels = batch[1]
        _, trainingLoss = sess.run([opt, loss], feed_dict={X: batchInput, y: batchLabels})
        if i%1000 == 0:
            trainAccuracy = accuracy.eval(session=sess, feed_dict={X: batchInput, y: batchLabels})
            print ("step %d, training accuracy %g"%(i, trainAccuracy))
    

    两层神经网络

    numHiddenUnitsLayer2 = 100
    trainingIterations = 10000
    
    X = tf.placeholder(tf.float32, shape = [None, inputSize])
    y = tf.placeholder(tf.float32, shape = [None, numClasses])
    
    W1 = tf.Variable(tf.random_normal([inputSize, numHiddenUnits], stddev=0.1))
    B1 = tf.Variable(tf.constant(0.1), [numHiddenUnits])
    
    W2 = tf.Variable(tf.random_normal([numHiddenUnits, numHiddenUnitsLayer2], stddev=0.1))
    B2 = tf.Variable(tf.constant(0.1), [numHiddenUnitsLayer2])
    
    W3 = tf.Variable(tf.random_normal([numHiddenUnitsLayer2, numClasses], stddev=0.1))
    B3 = tf.Variable(tf.constant(0.1), [numClasses])
    
    hiddenLayerOutput = tf.matmul(X, W1) + B1
    hiddenLayerOutput = tf.nn.relu(hiddenLayerOutput)
    hiddenLayer2Output = tf.matmul(hiddenLayerOutput, W2) + B2
    hiddenLayer2Output = tf.nn.relu(hiddenLayer2Output)
    finalOutput = tf.matmul(hiddenLayer2Output, W3) + B3
    
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y, logits = finalOutput))
    opt = tf.train.GradientDescentOptimizer(learning_rate = .1).minimize(loss)
    
    correct_prediction = tf.equal(tf.argmax(finalOutput,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(trainingIterations):
        batch = mnist.train.next_batch(batchSize)
        batchInput = batch[0]
        batchLabels = batch[1]
        _, trainingLoss = sess.run([opt, loss], feed_dict={X: batchInput, y: batchLabels})
        if i%1000 == 0:
            train_accuracy = accuracy.eval(session=sess, feed_dict={X: batchInput, y: batchLabels})
            print ("step %d, training accuracy %g"%(i, train_accuracy))
    
    testInputs = mnist.test.images
    testLabels = mnist.test.labels
    acc = accuracy.eval(session=sess, feed_dict = {X: testInputs, y: testLabels})
    print("testing accuracy: {}".format(acc))
    

    卷积神经网络

    增加卷积层和池化层

    mnist = input_data.read_data_sets("data/", one_hot=True)
    
    tf.reset_default_graph() 
    sess = tf.InteractiveSession()
    x = tf.placeholder("float", shape = [None, 28,28,1]) #shape in CNNs is always None x height x width x color channels
    y_ = tf.placeholder("float", shape = [None, 10]) #shape is always None x number of classes
    
    
    W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))#shape is filter x filter x input channels x output channels
    b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #shape of the bias just has to match output channels of the filter
    
    h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
    h_conv1 = tf.nn.relu(h_conv1)
    h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    def conv2d(x, W):
        return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    # Second Conv and Pool Layers 
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
    b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # First Fully Connected Layer 第一个全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
    b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    # Dropout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # Second Fully Connected Layer
    W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
    b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))
    
    #Final Layer
    y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
    crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y))
    trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)  # 指定 AdamOptimizer 优化器,会自适应调整学习率;以前使用过梯度下降来优化。
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess.run(tf.global_variables_initializer())
    
    batchSize = 50
    for i in range(1000):
        batch = mnist.train.next_batch(batchSize)
        trainingInputs = batch[0].reshape([batchSize,28,28,1])
        trainingLabels = batch[1]
        if i%100 == 0:
            trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})
            print ("step %d, training accuracy %g"%(i, trainAccuracy))
        trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})
    

  • 相关阅读:
    modelsim(2)
    【管理心得之十六】我来吐槽 “面试”
    【管理心得之十五】没有100%的答案,只有70%认可的答案
    【管理心得之十四】团队中的“短板”,是你?还是他?
    【管理心得之十三】真正步入轨道的管理,是单调无味的、是枯燥死板的
    【管理心得之十二】拿什么来拯救你我的“协力人员” (后篇)
    【管理心得之十一】拿什么来拯救你我的“协力人员” (前篇)
    【管理心得之十】你是信息的发送方,应尽的责任你做到了吗?
    【管理心得之九】奉劝那些把组织“玩弄于鼓掌之间”的OL们。(别让组织看见此篇)
    【管理心得之八】通过现象看本质,小王和小张谁更胜任?
  • 原文地址:https://www.cnblogs.com/fldev/p/14371370.html
Copyright © 2020-2023  润新知