• 拉索回归(LASSO Regularizarion)



    什么是拉索回归

    LASSO: Least Absolute Shrinkage and Selection Operator Regression

    岭回归的目标:
    使 $J( heta) = MSE(Y, hat{y}; heta) alpha frac{1}{2} sum_{i=1}^n heta^2_i $ 尽可能小

    LASSO 回归的目标:
    使 $J( heta) = MSE(Y, hat{y}; heta) alpha sum_{i=1}^n | heta_i | $ 尽可能小

    LASSO趋向于使得一部分theta值变为0。 所以可作为特征选择用(也是名字中 Selection 的意义)。


    比较 Ridge & LASSO

    下面几组式子 模式比较相像

    表达不同的衡量标准,但是背后的数学思想非常相似,表达出来的数学含义近乎一致。

    • Ridge & LASSO :衡量正则化

    • MSE & MAE:衡量回归结果的好坏

    • 欧拉距离 & 曼哈顿距离:衡量两点之间距离的大小


    L0 正则

    $J( heta)= МЅЕ(у, hat{y}у; heta)+ mіn{非0 heta} $

    实际用L1取代,因为L0正则的优化是一个NP难的问题


    弹性网 Elastoc Net

    结合 L1 和 L2 正则项,添加比例 r。


    代码实现

    import numpy as np
    import matplotlib.pyplot as plt
     
    np.random.seed(42)
    x = np.random.uniform(-3.0, 3.0, size=100)
    X = x.reshape(-1, 1)
    y = 0.5 * x + 3 + np.random.normal(0, 1, size=100)
     
    plt.scatter(x, y)
    plt.show()
    


    from sklearn.model_selection import train_test_split
    
    np.random.seed(666)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
     
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression
    
    def PolynomialRegression(degree):
        return Pipeline([
            ("poly", PolynomialFeatures(degree=degree)),
            ("std_scaler", StandardScaler()),
            ("lin_reg", LinearRegression())
        ])
     
    from sklearn.metrics import mean_squared_error
    
    poly_reg = PolynomialRegression(degree=20)
    poly_reg.fit(X_train, y_train)
    
    y_predict = poly_reg.predict(X_test)
    mean_squared_error(y_test, y_predict)
    # 167.94010867293571
     
    def plot_model(model):
        X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
        y_plot = model.predict(X_plot)
    
        plt.scatter(x, y)
        plt.plot(X_plot[:,0], y_plot, color='r')
        plt.axis([-3, 3, 0, 6])
        plt.show()
    
    plot_model(poly_reg)
    


    from sklearn.linear_model import Lasso
    
    def LassoRegression(degree, alpha):
        return Pipeline([
            ("poly", PolynomialFeatures(degree=degree)),
            ("std_scaler", StandardScaler()),
            ("lasso_reg", Lasso(alpha=alpha))
        ])
     
    lasso1_reg = LassoRegression(20, 0.01)
    lasso1_reg.fit(X_train, y_train)
    
    y1_predict = lasso1_reg.predict(X_test)
    mean_squared_error(y_test, y1_predict)
    # 1.1496080843259966
     
    plot_model(lasso1_reg)
    


    lasso2_reg = LassoRegression(20, 0.1)
    lasso2_reg.fit(X_train, y_train)
    
    y2_predict = lasso2_reg.predict(X_test)
    mean_squared_error(y_test, y2_predict)
    # 1.1213911351818648
     
    plot_model(lasso2_reg)
    


    lasso3_reg = LassoRegression(20, 1)
    lasso3_reg.fit(X_train, y_train)
    
    y3_predict = lasso3_reg.predict(X_test)
    mean_squared_error(y_test, y3_predict)
    # 1.8408939659515595
     
    plot_model(lasso3_reg)
    


  • 相关阅读:
    flutter doctor出现问题 [!] Android toolchain
    CSS中的cursor属性
    致蝙蝠侠阿卡姆三部曲——最伟大的改编游戏
    ajax的使用:例题、ajax的数据处理
    用ajax对数据进行删除和查看
    ThinkPhp框架:验证码功能
    ThinkPhp框架:父类及表单验证
    ThinkPhp框架:分页查询和补充框架知识
    ThinkPhp框架对“数据库”的基本操作
    ThinkPHP框架知识的注意点
  • 原文地址:https://www.cnblogs.com/fldev/p/14360883.html
Copyright © 2020-2023  润新知