题目描述
在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。
输入输出格式
输入格式:第1行:两个正整数N,M
第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。
输出格式:第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。
第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。
输入输出样例
输入样例#1:
5 5
1 2 1
1 3 2
2 4 2
5 1 2
3 5 1
输出样例#1:
3
1 3 5
说明
对于60%的数据:N <= 200且M <= 10,000
对于100%的数据:N <= 5,000且M <= 50,000
Solution:
本题特水。
直接tarjan缩点,处理出每个连通分量,排序后用vector保存一下,最后模拟一下就好了。
代码:
/*Code by 520 -- 8.22*/ #include<bits/stdc++.h> #define il inline #define ll long long #define RE register #define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++) #define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--) using namespace std; const int N=100005; int n,m,dfn[N],low[N],tot,ans; int to[N],net[N],h[N],cnt; int scc,bl[N],stk[N],top; bool ins[N]; vector<int>mp[N],tp; int gi(){ int a=0;char x=getchar(); while(x<'0'||x>'9')x=getchar(); while(x>='0'&&x<='9')a=(a<<3)+(a<<1)+(x^48),x=getchar(); return a; } il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void tarjan(int u){ dfn[u]=low[u]=++tot,stk[++top]=u,ins[u]=1; for(RE int i=h[u];i;i=net[i]) if(!dfn[to[i]]) tarjan(to[i]),low[u]=min(low[u],low[to[i]]); else if(ins[to[i]]) low[u]=min(low[u],dfn[to[i]]); if(low[u]==dfn[u]){ scc++; while(stk[top+1]!=u) bl[stk[top]]=scc,mp[scc].push_back(stk[top]),ins[stk[top--]]=0; sort(mp[scc].begin(),mp[scc].end()); } } il void init(){ n=gi(),m=gi(); int u,v,f; while(m--){ u=gi(),v=gi(),f=gi(); add(u,v); if(f==2)add(v,u); } For(i,1,n) if(!dfn[i]) tarjan(i); For(i,1,scc) { u=mp[i].size(); if(u>ans) { ans=u; tp=mp[i]; } else if(u==ans){ f=0; For(j,0,u-1) if(mp[i][j]<tp[j]) {f=1;break;} if(f) tp=mp[i]; } } printf("%d ",ans); For(i,0,ans-1) printf("%d ",tp[i]); } int main(){ init(); return 0; }