• P1613 跑路


    题目描述

    小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

    输入输出格式

    输入格式:

     

    第一行两个整数n,m,表示点的个数和边的个数。

    接下来m行每行两个数字u,v,表示一条u到v的边。

     

    输出格式:

     

    一行一个数字,表示到公司的最少秒数。

     

    输入输出样例

    输入样例#1: 
    4 4
    1 1
    1 2
    2 3
    3 4
    
    输出样例#1: 
    1

    说明

    【样例解释】

    1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

    【数据范围】

    50%的数据满足最优解路径长度<=1000;

    100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

     

    Solution:

      本题思路贼有意思。

      首先按照题意每次能跳$2^k$的距离,不难想到用倍增,关键是倍增该怎么用到本题上。

      很容易想到用倍增来预处理每个点能一次跳到的点并建边,那么问题就转化为了最短路问题了。

      初始化设$g[i][j][k]$表示的是$i$到$j$能通过跳$2^k$一步到达,读入时便能处理出所有$k=0$的情况,然后就能直接倍增预处理了,状态转移方程为$g[i][j][k]=g[i][t][k-1]&g[t][j][k-1]$(意味着$i$到$t$能跳$2^{k-1}$次一步到达,$t$到$j$能跳$2^{k-1}$一步到达,那么$i$到$t$能跳$2^{k-1}+2^{k-1}=2^k$次一步到达),能一步到的就连边权为$1$。

      最后只需要跑一下最短路就好了,$nleq 50$且题目中边所连的点还能相同,直接跑$floyd$就可以了。

    代码:

    #include<bits/stdc++.h>
    #define il inline
    #define ll long long
    #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
    #define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
    using namespace std;
    int n,m,mp[55][55];
    bool vis[55],g[55][55][25];
    
    il int gi(){
        int a=0;char x=getchar();bool f=0;
        while((x<'0'||x>'9')&&x!='-')x=getchar();
        if(x=='-')x=getchar(),f=1;
        while(x>='0'&&x<='9')a=(a<<3)+(a<<1)+x-48,x=getchar();
        return f?-a:a;
    }
    
    int main(){
        n=gi(),m=gi();
        int u,v;
        memset(mp,0x3f,sizeof(mp));
        For(i,1,m) u=gi(),v=gi(),g[u][v][0]=1,mp[u][v]=1;
        For(k,1,24) For(i,1,n) For(t,1,n) For(j,1,n)
            if(g[i][t][k-1]&&g[t][j][k-1]) g[i][j][k]=1,mp[i][j]=1;
        For(k,1,n) For(i,1,n) For(j,1,n) mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
        cout<<mp[1][n];
        return 0;
    }
  • 相关阅读:
    Script.NET Perl解释器代码已经在GitHub开源发布
    hdu 1754 I Hate It (splay tree伸展树)
    【读书笔记】淘宝技术这十年
    raid*
    点到点,端到端概念
    Linux下oracle导入(exp)导出(imp)出现"Failed to open ...for reader/write"错误
    gpgcheck
    linux硬件时间修改与查看
    oracle makefile
    linux rar工具
  • 原文地址:https://www.cnblogs.com/five20/p/9332681.html
Copyright © 2020-2023  润新知