• P2657 [SCOI2009]windy数


    题目描述

    windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,

    在A和B之间,包括A和B,总共有多少个windy数?

    输入输出格式

    输入格式:

    包含两个整数,A B。

    输出格式:

    一个整数

    输入输出样例

    输入样例#1: 
    1 10
    输出样例#1: 
    9
    输入样例#2: 
    25 50
    
    输出样例#2: 
    20
    

    说明

    100%的数据,满足 1 <= A <= B <= 2000000000 。

    Solution:

      本题显然数位$DP$,暂时不会(留着填坑~)。

      提供打表的思路,先线下每$10^6$个处理一次,统计出$2000$个答案(前缀和$sum[i]$表示$1$到$i*10^6$中满足条件的个数)。

      那么查询时就直接瞎搞模拟,最多计算$10^6$次。

    打表代码:

    /**************************************************************
        Problem: 1026
        User: five20
        Language: C++
        Result: Accepted
        Time:256 ms
        Memory:1296 kb
    ****************************************************************/
     
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
    using namespace std;
    const int N=1e6+5;
    int ans,a,b,sum[2005]={0, 202174, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155315, 136131, 138503, 138214, 138252, 138252, 138214, 138503, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 138503, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 0, 0, 0, 138214, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 0, 0, 0, 138252, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 0, 0, 0, 138252, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 0, 0, 0, 138214, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 0, 0, 0, 138503, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 0, 0, 0, 136131, 155315, 155315, 136131, 138503, 138214, 138252, 138252, 0, 0, 0, 155315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    inline void check(int x){
        if(x<=9){ans++;return;}
        int a=x,b=-5;
        while(a){
            if(abs(a%10-b)<2)return;
            b=a%10;a=a/10;
        }
        ans++;
    }
    int main(){
        cin>>a>>b;
        if(b-a<=1000000){
            For(i,a,b)check(i);
            cout<<ans;
            return 0;
        }
        int p=ceil(a*1.0/1000000),q=floor(b*1.0/1000000);
        For(i,1,2000)sum[i]+=sum[i-1];
        ans+=sum[q]-sum[p];
        if(!ans)ans++;
        p=p*1000000,q=q*1000000;
        if(a!=p)
        For(i,a,p-1)check(i);
        if(b!=q)
        For(i,q+1,b)check(i);
        cout<<ans;
        return 0;

     

    过来填坑啦~:2018-05-26

      本题套上一个数位$dp$的板子。定义状态$f[i][j]$表示第$i$位为数字$j$时的合法个数。

      由于本题的约数条件是相邻两位数字之差不小于$2$(且所有个位数均视为满足条件),直接套板子肯定有问题,比如$[45,4500]$,枚举时当前几位连续为$0$时必须往后判断,否则会出兮兮,那么就必须去处理前导$0$的问题。

      于是在普通的约束上界$limit1$的条件下(即每次枚举数字时是否受限),再加一个$limit2$来判断前导$0$的情况。

      那么每次枚举当前位数字时,判断一下上一位是否受$limit2$的限制且当前位为$0$,是的话就说明这时存在前导$0$,往后搜索时将$lst$赋值为$-2$(这样$0-(-2)geq 2$)。

      然后所有的不受限制的情况都记忆化一下,最后前缀和思想相减就是答案了。

    $DP$代码:

    #include<bits/stdc++.h>
    #define il inline
    #define ll long long
    #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
    using namespace std;
    ll a,b,f[20][10],cnt,p[20];
    il ll dfs(int pos,int lst,bool limit1,bool limit2){
        if(!pos)return 1;
        if(!limit2&&!limit1&&f[pos][lst]!=-1)return f[pos][lst];
        int op,up=limit1?p[pos]:9;
        ll tmp=0;
        For(i,0,up){
            if(abs(i-lst)<2)continue;
            op=i;
            if(limit2&&!i)op=-2;
            tmp+=dfs(pos-1,op,(limit1)&&(i==up),(op==-2));
        }
        if(!limit1&&!limit2)f[pos][lst]=tmp;
        return tmp;
    }
    il ll solve(ll x){
        cnt=0;
        while(x)p[++cnt]=x%10,x/=10;
        return dfs(cnt,-2,1,1);
    }
    int main(){
        cin>>a>>b;
        memset(f,-1,sizeof(f));
        printf("%lld
    ",solve(b)-solve(a-1));
        return 0;
    }

     

  • 相关阅读:
    redis 命令
    继续node爬虫 — 百行代码自制自动AC机器人日解千题攻占HDOJ
    redis Ok2
    ThinkPHP5 清除runtime缓存文件
    linux系统下使用xampp 丢失mysql root密码 只能远程访问,本地无法连接数据库
    yii2 验证规则使用方法
    thinkphp5 模型表关联
    PHP将base64数据流转换成图片并保存
    Win10下80端口被System占用导致Apache无法启动
    3. Git与TortoiseGit基本操作
  • 原文地址:https://www.cnblogs.com/five20/p/9040490.html
Copyright © 2020-2023  润新知