题意
给出n个数,问这些数的某些数xor后第k小的是谁。
思路
高斯消元求线性基。
把每个数都拆成二进制,然后进行高斯消元,如果这个数字这一位(列)有1,那么让其他数都去异或它,消掉这一列的1,使得最后得到的矩阵某一行如果那一列有1的话,那么其他行是不会有1的(就是线性基)。
最后得到一个行数row,代表总共有row个1。
这个证明还没想通,直接用了。
如果得到的row == n的话,代表每一个数都有一个1,那么是取不到0的,这个时候只能得到 2^row - 1 个数,否则其他时候都可以取0。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int INF = 0x3f3f3f3f;
const int N = 1e4 + 11;
LL a[N];
int Gauss(int n) {
int row = 1;
for(int k = 63; k >= 0; k--) {
for(int i = row; i <= n; i++) {
if((a[i] >> k) & 1) {
swap(a[i], a[row]);
for(int j = 1; j <= n; j++)
if(j != row && ((a[j] >> k) & 1))
a[j] ^= a[row];
row++;
break;
}
}
}
return row - 1;
}
LL solve(int row, int n, LL k) {
if(row < n) {
if(k == 1) return 0;
k--;
}
if((1LL << row) <= k) return -1;
LL ans = 0;
for(int i = 63; i >= 0; i--)
if((k >> i) & 1) ans ^= a[row-i];
return ans;
}
int main() {
int t; scanf("%d", &t);
for(int cas = 1; cas <= t; cas++) {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
int row = Gauss(n);
int q; scanf("%d", &q);
printf("Case #%d:
", cas);
while(q--) {
LL k; scanf("%lld", &k);
printf("%lld
", solve(row, n, k));
}
} return 0;
}