题意
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
分析
对于一个长度为x的1,我们要计算其贡献,应该从上一次长度为x-1转移过来,那么自然有 (x+1)^3−x^3=3x^2+3x+1
这样依次维护x^2和x就好。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <algorithm> #include <cmath> #include <ctime> #include <vector> #include <queue> #include <map> #include <stack> #include <set> #include <bitset> using namespace std; typedef long long ll; typedef unsigned long long ull; #define ms(a, b) memset(a, b, sizeof(a)) #define pb push_back #define mp make_pair #define pii pair<int, int> #define IOS ios::sync_with_stdio(0);cin.tie(0); #define random(a, b) rand()*rand()%(b-a+1)+a #define pi acos(-1.0) const ll INF = 0x3f3f3f3f3f3f3f3fll; const int inf = 0x3f3f3f3f; const int maxn = 1e5+10; const int maxm = 1e5+10; const ll mod = 1e9+7; double p,h[maxn],g[maxn],f[maxn]; int main(){ #ifdef LOCAL freopen("in.txt", "r", stdin); // freopen("output.txt", "w", stdout); #endif int n; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%lf",&p); h[i]=(h[i-1]+1)*p; g[i]=(g[i-1]+h[i-1]*2+1)*p; f[i]=f[i-1]+(3*h[i-1]+3*g[i-1]+1)*p; } printf("%.1f ",f[n]); return 0; }