• 概率图:HMM:Learning问题(EM算法)


    一:问题描述

    Learning问题就是参数估计问题,也就是求模型参数λ,具体形式为 :λ_hat=argmax P(O|λ)   【通过最大化似然求得最优模型参数 λ;优化算法用EM,可类比GMM模型中求θ用的EM】

    二、EM算法应用于HMM-learning模型的公式推导(具体可参考之前博客GMM:EM)

     

                                                                                     (来源:B站up主,shuhuai008,板书) 

    备注:

    ①最后求出后,需要再代回,最后得到t+1时刻的Π值。【拉格朗日乘子法也可以用于求数值解】

    ②将EM算法应用于HMM算法的求解,其实就是引入EM算法的公式,然后用HMM的参数套入EM算法。

    通过条件概率公式进行化简,将参数迭代寻优的过程转化为带约束的求最值问题,然后按一般思路,用拉格朗日乘子法求解,得到Π(t+1),A(t+1),B(t+1)的迭代公式。

                                                                                      应用于HMM模型的EM算法公式推导

      将HMM参数套用进EM算法,得到适用于解决HMM-learning问题的EM算法,经过一系列转化,转化为带约束的最值问题,再用拉格朗日乘子法求解出参数的迭代公式

    公式推导中的关键小技巧:

    ①P(I|O,λ(t)) 转化为PP(I,O|λ(t)),便于后续步骤中利用条件概率和积分求和,将i2,i3,...iT化简掉

    ②注意P(O|λ)的公式在EM公式中的化用=> 将λ=(PI,A,B)三个参数解耦,各自独立迭代寻优。

    ④注意隐含约束:Σ1NΠi=1,用在两个地方。

    第一个地方是将约束放进最值公式(拉格朗日乘子法);

    另一个地方是在求解拉格朗日乘子的过程中,将P(O,i1=qi|λ(t))通过积分求和转化为P(O|λ)。

      

    参考资料:

    1.https://www.bilibili.com/video/BV1MW41167Rf?p=5。作者:shuhuai008

  • 相关阅读:
    暑假团队学习第一周
    Python快速入门(3)
    Python快速入门(2)
    走入PHP-类与对象
    走入PHP-declare、ticks、encoding、include
    走入PHP-变量、运算符
    XAMPP安装报错及解决
    走入PHP-数据类型和字符串语法
    走入PHP-初次见面
    剑指offer-替换空格
  • 原文地址:https://www.cnblogs.com/feynmania/p/13282639.html
Copyright © 2020-2023  润新知