Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:构建结果数组res,然后从头到尾扫描一遍nums数组。
res[i]所存的值为nums[0]到nums[i - 1]的乘积,res[0] = 1。
最后从尾到头再扫描一遍nums数组,res[i]这次再乘上nums[i + 1]到nums[n - 1]的值。
所乘上的值可以只由一个变量来计算完成。这里用一个int变量,命名为right,初始为1。
则res[i]乘以right就是最后结果值。要注意的是,每次乘完之后,right要更新为right * nums[i]。
1 class Solution { 2 public: 3 vector<int> productExceptSelf(vector<int>& nums){ 4 int n = nums.size(); 5 vector<int> res(n, 1); 6 for (int i = 0; i < n; i++) 7 res[i] = (i == 0 ? 1 : res[i - 1] * nums[i - 1]); 8 int right = 1; 9 for (int i = n - 1; i >= 0; i--) 10 { 11 res[i] *= right; 12 right *= nums[i]; 13 } 14 return res; 15 } 16 };