题目链接:
http://codeforces.com/problemset/problem/451/E
E. Devu and Flowers
memory limit per test256 megabytes
输入
The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).
The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).
输出
Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).
样例输入
3 5
1 3 2
样例输出
3
题意
给你n个花瓶,每个花瓶上装有f[i]朵颜色相同的玫瑰。现在你要从中取s朵,问有多少种取法。
题解
首先,如果每个花瓶里面的花都有无限朵的话,那么这就是简单的隔板问题(c[s+n-1][n-1]),那么我们可以通过容斥把问题都转换成无限制的问题。 首先我们考虑第i个超过了限制,那么相当于对剩下的sum=s-f[i]-1,做一遍无限制的隔板,这样我们对n个花瓶容斥一遍,就能求出答案。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef __int64 LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int mod=1e9+7;
LL n;
LL s,f[22];
void gcd(LL a,LL b,LL& d,LL& x,LL& y){
if(!b){ d=a; x=1; y=0; }
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LL Inv(LL a,LL n){
LL d,x,y;
gcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
LL get_C(LL n,LL m){
LL a=1,b=1;
for(int i=1;i<=m;i++){
b=b*i%mod;
a=a*(n-i+1)%mod;
}
return a*Inv(b,mod)%mod;
}
LL Lucas(LL n,LL m){
if(m==0) return 1;
return get_C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;
}
int main() {
scf("%I64d%I64d",&n,&s);
for(int i=0;i<n;i++) scf("%I64d",f+i);
LL ans=0;
for(int i=0;i<(1<<n);i++){
LL sum=s;
int cnt=0;
for(int j=0;j<n;j++){
if((i&(1<<j))==0) continue;
cnt++;
sum-=(f[j]+1);
}
if(sum>=0){
if(cnt&1){
ans-=Lucas(sum+n-1,n-1);
}else{
ans+=Lucas(sum+n-1,n-1);
}
ans=(ans%mod+mod)%mod;
}
}
prf("%I64d
",ans);
return 0;
}
/*
5 3
1 2 9
3 4 5
3 5 3
*/