• HDU 4389 X mod f(x) 数位dp


    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=4389

    X mod f(x)

    Time Limit: 4000/2000 MS (Java/Others)
    Memory Limit: 32768/32768 K (Java/Others)
    #### 问题描述 > Here is a function f(x): >    int f ( int x ) { >     if ( x == 0 ) return 0; >     return f ( x / 10 ) + x % 10; >    } > >    Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0. #### 输入 >    The first line has an integer T (1 <= T <= 50), indicate the number of test cases. >    Each test case has two integers A, B. #### 输出 >    For each test case, output only one line containing the case number and an integer indicated the number of x. ####样例输入 > 2 > 1 10 > 11 20

    样例输出

    Case 1: 10
    Case 2: 3

    题意

    问区间[l,r]之间满足x%f[x]==0的x有多少个,其中f[x]表示x各数位之和。

    题解

    这题关键的地方是你如果把f[x]这个变量固定下来,那问题就变成普通的求模问题了。

    dp[len][mod][k][r]表示f[x]=mod的那些数,前len位的各位数之和为k的,且取模mod的个数有多少个。

    代码

    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<ctime>
    #include<vector>
    #include<cstdio>
    #include<string>
    #include<bitset>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    using namespace std;
    #define X first
    #define Y second
    #define mkp make_pair
    #define lson (o<<1)
    #define rson ((o<<1)|1)
    #define mid (l+(r-l)/2)
    #define sz() size()
    #define pb(v) push_back(v)
    #define all(o) (o).begin(),(o).end()
    #define clr(a,v) memset(a,v,sizeof(a))
    #define bug(a) cout<<#a<<" = "<<a<<endl
    #define rep(i,a,b) for(int i=a;i<(b);i++)
    #define scf scanf
    #define prf printf
    
    typedef int LL;
    typedef vector<int> VI;
    typedef pair<int,int> PII;
    typedef vector<pair<int,int> > VPII;
    
    const int INF=0x3f3f3f3f;
    const LL INFL=0x3f3f3f3f3f3f3f3fLL;
    const double eps=1e-8;
    const double PI = acos(-1.0);
    
    //start----------------------------------------------------------------------
    
    const int maxn=11;
    const int maxm=82;
    
    int arr[maxn],tot;
    LL dp[maxn][maxm][maxm][maxm];
    ///ismax标记表示前驱是否是边界值
    int _mod;
    LL dfs(int len,int k, int mod, bool ismax) {
        if(k<0) return 0;
        if (len == 0) {
            ///递归边界
            if(k==0&&mod==0) return 1;
            return 0;
        }
        if (!ismax&&dp[len][_mod][k][mod]>=0) return dp[len][_mod][k][mod];
    
        LL res = 0;
        int ed = ismax ? arr[len] : 9;
        ///这里插入递推公式
        for (int i = 0; i <= ed; i++) {
            res += dfs(len - 1, k-i, (mod*10+i)%_mod,ismax&&i == ed);
        }
    
        return ismax ? res : dp[len][_mod][k][mod] = res;
    }
    
    LL solve(LL x) {
        tot = 0;
        while (x) { arr[++tot] = x % 10; x /= 10; }
    
        LL ret=0;
        for(int i=1;i<maxm;i++){
            _mod=i;
            LL res=dfs(tot,i,0,true);
            ret+=res;
        }
    
        return ret;
    }
    
    int main() {
        clr(dp,-1);
        int tc,kase=0;
        scf("%d",&tc);
        while(tc--){
            LL x,y;
            scf("%d%d",&x,&y);
            prf("Case %d: %d
    ",++kase,solve(y)-solve(x-1));
        }
        return 0;
    }
    
    //end-----------------------------------------------------------------------
    

    Notes

    dp的状态的维数就是吧一些变量变成常量(去枚举变量),然后简化问题。所以做这类问题的时候可以考虑先把所有的变量都找出来,然后去分析。

  • 相关阅读:
    Computer Vision 基础学习
    PHP遍历文件夹下的文件时遇到中文目录乱码问题
    Note -「模板」矩阵
    Note -「模板」高斯消元
    Solution -「CF113D」Museum
    【更新中】后缀数组学习笔记
    【题解】ABC225F
    【更新中】2021ZR模拟赛要题记录
    【游记】CSP-S-2021
    【题解】#2019 [zr联赛集训day3]史上第四简洁的题面
  • 原文地址:https://www.cnblogs.com/fenice/p/5892174.html
Copyright © 2020-2023  润新知