题目链接:
http://acm.hust.edu.cn/vjudge/problem/96344
Punching Robot
64bit IO Format: %lld & %llu
题意
在n*m的棋盘上有k个障碍物,并且这k个障碍物周围8个格子也都是障碍物,问从(1,1)到(n,m)总共有多少种不经过障碍物任何的走法(每次只能向下走或者向右走。
题解
这题和之前的一道题基本相同:点这里
由于给的质数比较小,所以不能保证互质(比如说mod与mod就不会互质了),所以求逆的时候会出问题,可以考虑求阶乘的时候单独把997这个因子全部提出来,并且记录下个数,单独讨论一下就可以做了。
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=2e6+10;
const int mod=997;
int n,m,k;
LL dp[111],fac[maxn];
int num[maxn];
VPII robot;
void gcd(LL a,LL b,LL& d,LL& x,LL& y){
if(!b){ d=a; x=1; y=0; }
else{ gcd(b,a%b,d,y,x); y-=x*(a/b); }
}
LL Inv(LL a,int mod){
LL d,x,y;
gcd(a,mod,d,x,y);
return d==1?(x+mod)%mod:-1;
}
LL get_C(int n,int m){
if(n<m||n<0||m<0) return 0;
if(num[n]!=num[m]+num[n-m]) return 0;
return fac[n]*Inv(fac[m]*fac[n-m]%mod,mod)%mod;
}
LL calc(int i,int j){
int n=robot[j].X-robot[i].X;
int m=robot[j].Y-robot[i].Y;
if(n<0||m<0) return 0;
return get_C(n+m,n);
}
void pre(){
clr(num,0);
fac[0]=1;
for(int i=1;i<maxn;i++){
int x=i;
num[i]+=num[i-1];
while(x%mod==0){
x/=mod;
num[i]++;
}
fac[i]=fac[i-1]*x%mod;
}
}
void init(){
clr(dp,0);
robot.clear();
}
int main() {
pre();
int tc,kase=0;
scf("%d",&tc);
while(tc--){
scf("%d%d%d",&n,&m,&k);
init();
int su=1;
for(int i=1;i<=k;i++){
int x,y;
scf("%d%d",&x,&y);
for(int dx=-1;dx<=1;dx++){
for(int dy=-1;dy<=1;dy++){
int a=x+dx,b=y+dy;
robot.pb(mkp(a,b));
if(a==1&&b==1||a==n&&b==m){
su=0;
}
}
}
}
if(!su){ puts("0"); continue; }
robot.pb(mkp(1,1));
robot.pb(mkp(n,m));
sort(robot.begin(),robot.end());
for(int i=1;i<robot.sz();i++){
dp[i]=calc(0,i);
for(int j=1;j<i;j++){
dp[i]=(dp[i]-dp[j]*calc(j,i)%mod)%mod;
}
dp[i]=(dp[i]+mod)%mod;
}
printf("Case #%d: %lld
",++kase,dp[robot.sz()-1]);
}
return 0;
}
//end-----------------------------------------------------------------------
其实直接上卢卡斯就不会有不互质的困扰啦!(跑的更快!)
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=2e6+10;
const int mod=997;
int n,m,k;
LL dp[111],fac[mod+10],facinv[mod+10],inv[mod+10];
VPII robot;
LL get_C(int n,int m){
if(n<m||n<0||m<0) return 0;
return fac[n]*facinv[n-m]%mod*facinv[m]%mod;
}
LL Lucas(LL n,LL m,LL p){
if(m==0) return 1LL;
return get_C(n%p,m%p)*Lucas(n/p,m/p,p)%p;
}
LL calc(int i,int j){
int n=robot[j].X-robot[i].X;
int m=robot[j].Y-robot[i].Y;
if(n<0||m<0) return 0;
return Lucas(n+m,n,mod);
}
void pre(){
fac[0]=fac[1]=1;
facinv[0]=facinv[1]=1,inv[1]=1;
for(int i=2;i<mod;i++){
fac[i]=fac[i-1]*i%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
facinv[i]=facinv[i-1]*inv[i]%mod;
}
}
void init(){
clr(dp,0);
robot.clear();
}
int main() {
pre();
int tc,kase=0;
scf("%d",&tc);
while(tc--){
scf("%d%d%d",&n,&m,&k);
init();
int su=1;
for(int i=1;i<=k;i++){
int x,y;
scf("%d%d",&x,&y);
for(int dx=-1;dx<=1;dx++){
for(int dy=-1;dy<=1;dy++){
int a=x+dx,b=y+dy;
robot.pb(mkp(a,b));
if(a==1&&b==1||a==n&&b==m){
su=0;
}
}
}
}
if(!su){ puts("0"); continue; }
robot.pb(mkp(1,1));
robot.pb(mkp(n,m));
sort(robot.begin(),robot.end());
for(int i=1;i<robot.sz();i++){
dp[i]=calc(0,i);
for(int j=1;j<i;j++){
dp[i]=(dp[i]-dp[j]*calc(j,i)%mod)%mod;
}
dp[i]=(dp[i]+mod)%mod;
}
printf("Case #%d: %lld
",++kase,dp[robot.sz()-1]);
}
return 0;
}
//end-----------------------------------------------------------------------