• UVa #11582 Colossal Fibonacci Numbers!


                                                               巨大的斐波那契数

    The i'th Fibonacci number f (i) is recursively defined in the following way:

    • f (0) = 0 and f (1) = 1
    • f (i+2) = f (i+1) + f (i)  for every i ≥ 0

    Your task is to compute some values of this sequence.

    Input begins with an integer t ≤ 10,000, the number of test cases. Each test case consists of three integers a,b,n where 0 ≤ a,b < 264 (a andb will not both be zero) and 1 ≤ n ≤ 1000.

    For each test case, output a single line containing the remainder of f (ab) upon division by n.

    Sample input

    3
    1 1 2
    2 3 1000
    18446744073709551615 18446744073709551615 1000
    

    Sample output

    1
    21
    250

    题意:
    输 入两个非负整数a、b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,
    其中f(0) = 0,f(1) = 1;且对任意非负整数i,f(i+2)= f(i+1)+f(i)。

    分析:
    因为斐波那契序列要对n取模,余数只有n种,所以最多n^2项序列就开始重复,所以问题转化成了求周期然后大整数取模。
    小于2^64的数要用unsigned long long。
    #include<iostream>
    #include<cstring>
    #include<cstdio>
     using namespace std;
     const  int maxn=1000+5;
     int m[maxn],n;
     typedef unsigned long long ULL;
     unsigned long long a,b;
     unsigned long long f[maxn][3100];
     int pow_mod(ULL a,ULL b,int n)
     {
         if(b==0)  return 1;
        int x=pow_mod(a,b/2,n);
         unsigned long long ans=(unsigned long long )x*x%n;
         if(b%2==1) ans=ans*a%n;
         return (int)ans;
     }
     int main()
     {
         for(n=2;n<=1000;n++)
         {
             f[n][0]=0,f[n][1]=1;
             for(int i=2;;i++)
             {
                 f[n][i]=(f[n][i-1]+f[n][i-2])%n;
                 if(f[n][i]==1&&f[n][i-1]==0)
                 {
                     m[n]=i-1;
                     break;
                 }
             }
         }
         int t;
         scanf("%d",&t);
         while(t--)
         {
             scanf("%llu%llu%d",&a,&b,&n);
             if(n==1||a==0) printf("0
    ");
             else printf("%d
    ",f[n][pow_mod(a%m[n],b,m[n])]);
         }
         return 0;
          }

                            

  • 相关阅读:
    For each···in / For···in / For···of
    JavaScript object
    specific word count (index of )
    history of program
    js的回调函数
    promise
    js的事件流事件机制
    js的closures(闭包)
    baidu-map
    基于封装优点的类设计习惯
  • 原文地址:https://www.cnblogs.com/fenhong/p/5430367.html
Copyright © 2020-2023  润新知