• [LeetCode] 349 Intersection of Two Arrays && 350 Intersection of Two Arrays II


    这两道题都是求两个数组之间的重复元素,因此把它们放在一起。

    原题地址:

    349 Intersection of Two Arrays :https://leetcode.com/problems/intersection-of-two-arrays/description/

    350 Intersection of Two Arrays II:https://leetcode.com/problems/intersection-of-two-arrays-ii/description/

    题目&&解法:

    1.Intersection of Two Arrays:

    Given two arrays, write a function to compute their intersection.

    Example:
    Given nums1 = [1, 2, 2, 1]nums2 = [2, 2], return [2].

    Note:

      • Each element in the result must be unique.
      • The result can be in any order.

    这道题目要注意的就是不能重复。我采取的做法是遍历一遍nums1数组,然后和nums2数组比对,假如nums2里面存在并且要返回的数组中没有这个数值,就把他插入要返回的数组里面。很低端的一种做法,代码如下:

    class Solution {
    public:
        vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
            vector<int> temp;
            for (int i = 0; i < nums1.size(); i++) {
                if (find(nums2.begin(), nums2.end(), nums1[i]) != nums2.end() && find(temp.begin(), temp.end(), nums1[i]) == temp.end()) {
                    temp.push_back(nums1[i]);
                }
            }
            return temp;
        }
    };

    2.Intersection of Two Arrays II

    Given two arrays, write a function to compute their intersection.

    Example:
    Given nums1 = [1, 2, 2, 1]nums2 = [2, 2], return [2, 2].

    Note:

    • Each element in the result should appear as many times as it shows in both arrays.
    • The result can be in any order.

    Follow up:

      • What if the given array is already sorted? How would you optimize your algorithm?
      • What if nums1's size is small compared to nums2's size? Which algorithm is better?
      • What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?

    这道题目比上面的题目复杂了一点,它要求把重复的元素都放进返回的数组里面,我采取了一种非常非常垃圾的做法:先定义一个结构体,一个int类型和一个bool类型,int变量数值复制传入的数组,然后用bool变量标记当前元素的数值是否已经插入要返回的数组。然后采取双层循环逐个比对。代码如下:

    class Solution {
    public:
        vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
        struct v{
          int data;
          bool isChoosed;
      };
        vector<struct v> struct_num1;
        vector<struct v> struct_num2;
        for (int i = 0; i < nums1.size(); i++) {
            struct v t;
            t.data = nums1[i];
            t.isChoosed = false;
            struct_num1.push_back(t);
        }
        for (int i = 0; i < nums2.size(); i++) {
            struct v t;
            t.data = nums2[i];
            t.isChoosed = false;
            struct_num2.push_back(t);
        }
        vector<int> temp;
        for (int i = 0; i < nums1.size(); i++) {
            for (int j = 0; j < nums2.size(); j++) {
                if (struct_num1[i].data == struct_num2[j].data && struct_num2[j].isChoosed == false && struct_num1[i].isChoosed == false) {
                    temp.push_back(struct_num2[j].data);
                    struct_num1[i].isChoosed = true;
                    struct_num2[j].isChoosed = true;
                }
            }
        }
        return temp;
        }
    };

    这种做法让我鄙视我自己,时间复杂度为O(n^2),极高。而且写起来极其麻烦。肯定有简单的方法啊!

    根据http://blog.csdn.net/yzhang6_10/article/details/51526070里面的一种比较快的思路:

    (1)先对两个数组进行排序

    (2)遍历两个数组,比较对应元素:若相等,两个数组的索引同时增加;若不等,较小元素的数组的索引增加。

    这是一个极精妙的方法,个人感觉原理和归并数组有点相似。这个算法值得经常去回顾一下,特此记录。

    代码如下:

    class Solution {
    public:
        vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
        sort(nums1.begin(), nums1.end());
        sort(nums2.begin(), nums2.end());
        vector<int> result;
        for (int i = 0, j = 0; i < nums1.size() && j < nums2.size(); ) 
        {
            if (nums1[i] == nums2[j])
            {
                result.push_back(nums1[i]);
                i++;
                j++;
            }
            else if (nums1[i] < nums2[j])
                i++;
            else if (nums1[i] > nums2[j])
                j++;
        }
            return result;
        }
    };
  • 相关阅读:
    Docker 私有仓库高级配置
    Docker 私有仓库
    Docker Hub
    访问 Docker 仓库
    Docker 删除容器
    392. 判断子序列
    605. 种花问题
    122. 买卖股票的最佳时机 II
    121. 买卖股票的最佳时机
    406. 根据身高重建队列
  • 原文地址:https://www.cnblogs.com/fengziwei/p/7544950.html
Copyright © 2020-2023  润新知