• 爬虫


    difference between urllib and urllib2

    网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。

    What is the difference between urllib and urllib2 modules of Python?
    #python的urllib2模块和urllib模块之间有什么不同呢?
    You might be intrigued by the existence of two separate URL modules in Python - urllib and urllib2. Even more intriguing: they are not alternatives for each other. 
    So what is the difference between urllib and urllib2, and do we need them both?
    #这两个模块你可能好奇,他们不是互相替代的模块。所以什么是他们之间的不同呢?什么时候我们使用他们?
    
    urllib and urllib2 are both Python modules that do URL request related stuff but offer different functionalities. Their two most significant differences are listed below:
    #urlib和urlib2他们都是访问URL相关请求功能的模块,下面列出了他们之间的重要差异:
    urllib2 can accept a Request object to set the headers for a URL request, urllib accepts only a URL. That means, you cannot masquerade your User Agent string etc.
    #urlib2 可以接受请求对象去设置这个请求的头部,urlib仅能接收一个URL意思是你不能伪装你的用户代理字符串。
    urllib provides the urlencode method which is used for the generation of GET query strings, urllib2 doesn't have such a function. This is one of the reasons why urllib is often used along with urllib2.
    #urlib 提供了 urlencode 方法用户生成和查询字符串,urlib2不支持这个功能,这是为什么常常urlib和urlib2一起使用的原因
    For other differences between urllib and urllib2 refer to their documentations, the links are given in the References section.
    #看下面的链接
    Tip: if you are planning to do HTTP stuff only, check out httplib2, it is much better than httplib or urllib or urllib2.
    #如果你仅仅是要获取http页面的东西的话,看看httplib2,它是比httplib or urlib or urlib2 更好的~~

    在查询的时候看到的文章很不错:

    http://www.hacksparrow.com/python-difference-between-urllib-and-urllib2.html

    References

    1. urllib
    2. urllib2

    在Python3中合并了 urllib 和 urllib2, 统一命名为 urllib 了

    urllib

    整个Urllib的源码也就1000来行可以自己看下源码~~,并且urllib2和urllib一样也就一个文件~

    1、urllib.urlopen(url, data=None, proxies=None, context=None)

    打开一个url的方法,返回一个文件对象,然后可以进行类似文件对象的操作。 

    import urllib
    
    f = urllib.urlopen('http://www.baidu.com/')
    
    content = f.readlines()
    print content

    对象返回的对象提供的方法如下:

    #这些方法的使用方式与文件对象完全一样
    read() , readline() ,readlines() , fileno() , close() 
    
    #返回一个请求头信息
    content = f.info()
    print content
    '''
    info方法内部调用的是headers方法
        def info(self):
            return self.headers
    '''
    #返回请求的状态码信息
    content = f.getcode()
    print content
    
    #返回请求的url信息
    content = f.geturl()
    print content

     2、urllib.urlencode(query) 将URL中的键值对一链接符&划分

    >>> urllib.urlencode({'word':'fengzao','age':18})
    'age=18&word=fengzao'

    所以我们可以结合urllib.urlopen来实现GET和POST请求

    GET

    import urllib
    
    params = urllib.urlencode({'word':'fengzao','age':18})
    '''
    >>> urllib.urlencode({'word':'fengzao','age':18})
    'age=18&word=fengzao'
    '''
    f = urllib.urlopen('http://zhidao.baidu.com/search?%s' % params)
    print f.read()

    POST 

    import urllib
    
    params = urllib.urlencode({'word':'fengzao','age':18})
    '''
    >>> urllib.urlencode({'word':'fengzao','age':18})
    'age=18&word=fengzao'
    '''
    f = urllib.urlopen('http://zhidao.baidu.com/search',params)
    for i in f.read().split('
    '):
        print i

    urllib2

    import urllib2
    import json
    import cookielib
    
    
    def urllib2_request(url, method="GET", cookie="", headers={}, data=None):
        """
        :param url: 要请求的url
        :param cookie: 请求方式,GET、POST、DELETE、PUT..
        :param cookie: 要传入的cookie,cookie= 'k1=v1;k1=v2'
        :param headers: 发送数据时携带的请求头,headers = {'ContentType':'application/json; charset=UTF-8'}
        :param data: 要发送的数据GET方式需要传入参数,data={'d1': 'v1'}
        :return: 返回元祖,响应的字符串内容 和 cookiejar对象
        对于cookiejar对象,可以使用for循环访问:
            for item in cookiejar:
                print item.name,item.value
        """
        if data:
            data = json.dumps(data)
    
        cookie_jar = cookielib.CookieJar()
        handler = urllib2.HTTPCookieProcessor(cookie_jar)
        opener = urllib2.build_opener(handler)
        opener.addheaders.append(['Cookie', 'k1=v1;k1=v2'])
        request = urllib2.Request(url=url, data=data, headers=headers)
        request.get_method = lambda: method
    
        response = opener.open(request)
        origin = response.read()
    
        return origin, cookie_jar
    
    
    # GET
    result = urllib2_request('http://127.0.0.1:8001/index/', method="GET")
    
    # POST
    result = urllib2_request('http://127.0.0.1:8001/index/',  method="POST", data= {'k1': 'v1'})
    
    # PUT
    result = urllib2_request('http://127.0.0.1:8001/index/',  method="PUT", data= {'k1': 'v1'})
    
    封装urllib请求

    requests

    上面是吧urllib2进行了封装并没有实现上传文件要是上传文件的话就更麻烦了,所以又出现了一个模块requests上面的操作就相当于底层的东西了,requests对其进行了封装!

    所以我们只需安装个包就OK了~

    # 1、基本POST实例
     
    import requests
     
    payload = {'key1': 'value1', 'key2': 'value2'}
    ret = requests.post("http://httpbin.org/post", data=payload)
     
    print ret.text
     
     
    # 2、发送请求头和数据实例
     
    import requests
    import json
     
    url = 'https://api.github.com/some/endpoint'
    payload = {'some': 'data'}
    headers = {'content-type': 'application/json'}
     
    ret = requests.post(url, data=json.dumps(payload), headers=headers)
     
    print ret.text
    print ret.cookies
    
    #向https://api.github.com/some/endpoint发送一个POST请求,将请求和相应相关的内容封装在 ret 对象中。

    二、其他请求

    requests.get(url, params=None, **kwargs)
    requests.post(url, data=None, json=None, **kwargs)
    requests.put(url, data=None, **kwargs)
    requests.head(url, **kwargs)
    requests.delete(url, **kwargs)
    requests.patch(url, data=None, **kwargs)
    requests.options(url, **kwargs)
     
    # 以上方法均是在此方法的基础上构建
    requests.request(method, url, **kwargs)

    requests模块已经将常用的Http请求方法为用户封装完成,用户直接调用其提供的相应方法即可,其中方法的所有参数有:

    def request(method, url, **kwargs):
        """Constructs and sends a :class:`Request <Request>`.
    
        :param method: method for the new :class:`Request` object.
        :param url: URL for the new :class:`Request` object.
        :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
        :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
        :param json: (optional) json data to send in the body of the :class:`Request`.
        :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
        :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
        :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': ('filename', fileobj)}``) for multipart encoding upload.
        :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
        :param timeout: (optional) How long to wait for the server to send data
            before giving up, as a float, or a :ref:`(connect timeout, read
            timeout) <timeouts>` tuple.
        :type timeout: float or tuple
        :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed.
        :type allow_redirects: bool
        :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
        :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``.
        :param stream: (optional) if ``False``, the response content will be immediately downloaded.
        :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
        :return: :class:`Response <Response>` object
        :rtype: requests.Response
    
        Usage::
    
          >>> import requests
          >>> req = requests.request('GET', 'http://httpbin.org/get')
          <Response [200]>
        """
    
        # By using the 'with' statement we are sure the session is closed, thus we
        # avoid leaving sockets open which can trigger a ResourceWarning in some
        # cases, and look like a memory leak in others.
        with sessions.Session() as session:
            return session.request(method=method, url=url, **kwargs)

    更多requests模块相关的文档见:http://cn.python-requests.org/zh_CN/latest/ 

    结合reques可以进行浏览器一模一样的工作!

    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    __author__ = 'ye'
    
    import requests
    import json
    
    
    login_dic = {
        'email':'shuaige@qq.com',
        'password':'shuaige!',
        '_ref':'frame',
    }
    
    login_ret = requests.post(url='https://huaban.com/auth/',
                              data=login_dic,
                              )
    print login_ret.text
    
    print '*' * 50
    
    check_my_info = requests.get(url='http://huaban.com/ugb8cx9ky3/following/')
    print check_my_info.text

    举例来说如果是在web上聊天原理上也是通过get或者post发送数据过去那么我们就可以通过reques来进行发送消息访问各种url 大赞~~

    一些基本用法也可参考:http://blog.csdn.net/alpha5/article/details/24964009

    scrapy

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
    其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

    requests本质就是就是发送http请求,如果在requests基础上做个封装,我去某个网站或者某个域名一直去发送请求找到所有的url,下载东西的请求在写个方法源源不断的下载东西!这样我们就写了个框架。

    Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

    Scrapy主要包括了以下组件:

    • 引擎(Scrapy)
      用来处理整个系统的数据流处理, 触发事务(框架核心)
    • 调度器(Scheduler)
      用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
    • 下载器(Downloader)
      用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
    • 爬虫(Spiders)
      爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
    • 项目管道(Pipeline)
      负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
    • 下载器中间件(Downloader Middlewares)
      位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
    • 爬虫中间件(Spider Middlewares)
      介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
    • 调度中间件(Scheduler Middewares)
      介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

    Scrapy中的数据流由执行引擎控制,其过程如下:

    1. 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
    2. 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
    3. 引擎向调度器请求下一个要爬取的URL。
    4. 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
    5. 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
    6. 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
    7. Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
    8. 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
    9. (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站。

     

     一、安装

    pip install Scrapy
    #windows平台需要依赖pywin32,请根据自己系统32/64位选择下载安装,https://sourceforge.net/projects/pywin32/

    安装时可能遇到问题,可参考之前写的文章: http://www.cnblogs.com/fengzaoye/p/5907669.html

     二、基本使用

    1、创建项目

    运行命令他和Django一样要想穿件Project必须执行下面的命令:

    scrapy startproject your_project_name

    将会在执行命令的目录自动创建如下文件:

    LuoTimdeMacBook-Pro-2:day26 luotim$ tree meinv/
    meinv/
    ├── meinv
    │   ├── __init__.py
    │   ├── items.py
    │   ├── pipelines.py
    │   ├── settings.py
    │   └── spiders
    │       └── __init__.py
    └── scrapy.cfg
    directories, 6 files
    • scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
    • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
    • pipelines    数据处理行为,如:一般结构化的数据持久化
    • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
    • spiders      爬虫目录,如:创建文件,编写爬虫规则

     2、编写爬虫

    注意:一般创建爬虫文件时,以网站域名命名

    在spiders目录中新建 xiaohuar_spider.py 文件

    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    __author__ = 'ye'
    
    import scrapy
    
    
    #定义一个类
    class XiaoHuarSpider(scrapy.spiders.Spider):
        #这个类是有名字的可以随便定义
        name = "xiaohuar"
        #定义限制只能在这个域名下爬
        allowed_domains = ["xiaohuar.com"]
        #起始URL
        start_urls = [
            "http://www.xiaohuar.com/hua/",
        ]
    
        '''
        #当程序运行的时候,会自动执行我们定义的上面的类,并访问start_urls并下载里面的内容封装起来传给parese中的"response"
        这个都是scrapy内部干的
        '''
    
        def parse(self, response):
            # print(response, type(response))
            # from scrapy.http.response.html import HtmlResponse
            # print(response.body_as_unicode())
    
            '''然后就可以通过response获取这次请求的相关信息'''
            current_url = response.url
            body = response.body
            unicode_body = response.body_as_unicode()

    3、运行

    进入project_name目录,运行命令!

    #进入scrapy项目目录里
    cd meinv
    
    #执行命令,这个spider_name就是在我们定义爬虫的那个类里的name字段
    scrapy crawl spider_name --nolog

    4、递归的访问

    以上的爬虫仅仅是爬去初始页,而我们爬虫是需要源源不断的执行下去,直到所有的网页被执行完毕

    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    __author__ = 'luotianshuai'
    
    import scrapy
    from scrapy.http import Request
    from scrapy.selector import HtmlXPathSelector
    import re
    import urllib
    import os
    
    
    class XiaoHuarSpider(scrapy.spiders.Spider):
        name = "xiaohuar"
        allowed_domains = ["xiaohuar.com"]
        start_urls = [
            "http://www.xiaohuar.com/list-1-1.html",
        ]
    
        def parse(self, response):
            '''
    分析页面
    找到页面中符合规则的内容(校花图片),保存
    找到所有的a标签,再访问其他a标签,一层一层的搞下去
            '''
    
    
    
            hxs = HtmlXPathSelector(response)
            '''
            hxs = HtmlXPathSelector(response)
            #格式化源码
            #以前咱们从html页面中去获取某些数据的时候需要用正则,现在不用了scrapy给咱们提供了类选择器
            #只要创建一个对象然后他就会页面中去找,他支持  --链式编程--  类似于找:
            div[@class='xxx]的标签 如果在加个/a  就是div[@class='xxx]/a 就是div下的class='xxx'的下面的a标签
            '''
    
            # 如果url是 http://www.xiaohuar.com/list-1-d+.html通过正则去判断,这里首选需要了解的是
            # 这个网站的URL设计就可以了,这是符合URL的
            if re.match('http://www.xiaohuar.com/list-1-d+.html', response.url):
    
                #这里是调用hxs然后去找到div下class='item_list infinite_scroll'下的div,
                #这个同样也是需要看下网页的设计结构,校花网的设计结构就是这样的嘿嘿....
                items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
    
    
                for i in range(len(items)):
                    #这个校花里的DIV是可以通过索引去取值的
                    src = hxs.select(
                        '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/a/img/@src' % i).extract()
                        #@表示取里面的属性
                    name = hxs.select(
                        '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/span/text()' % i).extract()
                    school = hxs.select(
                        '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/div[@class="btns"]/a/text()' % i).extract()
                    if src:
                        ab_src = "http://www.xiaohuar.com" + src[0]
                        file_name = "%s_%s.jpg" % (school[0].encode('utf-8'), name[0].encode('utf-8'))
                        
                        #这个方法下载文件,并且file_name为文件
                        urllib.urlretrieve(ab_src, file_name)
    
            # 获取所有的url,继续访问,并在其中寻找相同的url
            all_urls = hxs.select('//a/@href').extract()  #查找所有的A标签有href属性的URL
            #去循环他
            for url in all_urls:
                #并且这里在加了一个判断,也可以不加,并且符合
                if url.startswith('http://www.xiaohuar.com/list-1-'):
                    #如果你返回了一个URL并且有callback就会去递归,还去执行self.parse
                    yield Request(url, callback=self.parse)

    以上代码将符合规则的页面中的图片保存在指定目录,并且在HTML源码中找到所有的其他 a 标签的href属性,从而“递归”的执行下去,直到所有的页面都被访问过为止。以上代码之所以可以进行“递归”的访问相关URL,关键在于parse方法使用了 yield Request对象。

    执行效果,哇哦·

    注:可以修改settings.py 中的配置文件,以此来指定“递归”的层数,如: DEPTH_LIMIT = 1

    from scrapy.selector import Selector
    from scrapy.http import HtmlResponse
    html = """<!DOCTYPE html>
    <html>
    <head lang="en">
        <meta charset="UTF-8">
        <title></title>
    </head>
    <body>
        <li class="item-"><a href="link.html">first item</a></li>
        <li class="item-0"><a href="link1.html">first item</a></li>
        <li class="item-1"><a href="link2.html">second item</a></li>
    </body>
    </html>
    """
    response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
    ret = Selector(response=response).xpath('//li[re:test(@class, "item-d*")]//@href').extract()
    print(ret)
    正则选择器
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    import scrapy
    import hashlib
    from tutorial.items import JinLuoSiItem
    from scrapy.http import Request
    from scrapy.selector import HtmlXPathSelector
    
    
    class JinLuoSiSpider(scrapy.spiders.Spider):
        count = 0
        url_set = set()
    
        name = "jluosi"
        domain = 'http://www.jluosi.com'
        allowed_domains = ["jluosi.com"]
    
        start_urls = [
            "http://www.jluosi.com:80/ec/goodsDetail.action?jls=QjRDNEIzMzAzOEZFNEE3NQ==",
        ]
    
        def parse(self, response):
            md5_obj = hashlib.md5()
            md5_obj.update(response.url)
            md5_url = md5_obj.hexdigest()
            if md5_url in JinLuoSiSpider.url_set:
                pass
            else:
                JinLuoSiSpider.url_set.add(md5_url)
                hxs = HtmlXPathSelector(response)
                if response.url.startswith('http://www.jluosi.com:80/ec/goodsDetail.action'):
                    item = JinLuoSiItem()
                    item['company'] = hxs.select('//div[@class="ShopAddress"]/ul/li[1]/text()').extract()
                    item['link'] = hxs.select('//div[@class="ShopAddress"]/ul/li[2]/text()').extract()
                    item['qq'] = hxs.select('//div[@class="ShopAddress"]//a/@href').re('.*uin=(?P<qq>d*)&')
                    item['address'] = hxs.select('//div[@class="ShopAddress"]/ul/li[4]/text()').extract()
    
                    item['title'] = hxs.select('//h1[@class="goodsDetail_goodsName"]/text()').extract()
    
                    item['unit'] = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[1]//td[3]/text()').extract()
                    product_list = []
                    product_tr = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr')
                    for i in range(2,len(product_tr)):
                        temp = {
                            'standard':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[2]/text()' %i).extract()[0].strip(),
                            'price':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[3]/text()' %i).extract()[0].strip(),
                        }
                        product_list.append(temp)
    
                    item['product_list'] = product_list
                    yield item
    
                current_page_urls = hxs.select('//a/@href').extract()
                for i in range(len(current_page_urls)):
                    url = current_page_urls[i]
                    if url.startswith('http://www.jluosi.com'):
                        url_ab = url
                        yield Request(url_ab, callback=self.parse)
    选择器规则Demo
    def parse(self, response):
        from scrapy.http.cookies import CookieJar
        cookieJar = CookieJar()
        cookieJar.extract_cookies(response, response.request)
        print(cookieJar._cookies)
    获取相应cookies

    更多选择器规则:http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/selectors.html

    5、格式化处理

    上述实例只是简单的图片处理,所以在parse方法中直接处理。如果对于想要获取更多的数据(获取页面的价格、商品名称、QQ等),则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

    在items.py中创建类:

    # -*- coding: utf-8 -*-
     
    # Define here the models for your scraped items
    #
    # See documentation in:
    # http://doc.scrapy.org/en/latest/topics/items.html
     
    import scrapy
     
    class JieYiCaiItem(scrapy.Item):
     
        company = scrapy.Field()
        title = scrapy.Field()
        qq = scrapy.Field()
        info = scrapy.Field()
        more = scrapy.Field()

    上述定义模板,以后对于从请求的源码中获取的数据同意按照此结构来获取,所以在spider中需要有一下操作:

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    import scrapy
    import hashlib
    from beauty.items import JieYiCaiItem
    from scrapy.http import Request
    from scrapy.selector import HtmlXPathSelector
    from scrapy.spiders import CrawlSpider, Rule
    from scrapy.linkextractors import LinkExtractor
    
    
    class JieYiCaiSpider(scrapy.spiders.Spider):
        count = 0
        url_set = set()
    
        name = "jieyicai"
        domain = 'http://www.jieyicai.com'
        allowed_domains = ["jieyicai.com"]
    
        start_urls = [
            "http://www.jieyicai.com",
        ]
    
        rules = [
            #下面是符合规则的网址,但是不抓取内容,只是提取该页的链接(这里网址是虚构的,实际使用时请替换)
            #Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=d+'))),
            #下面是符合规则的网址,提取内容,(这里网址是虚构的,实际使用时请替换)
            #Rule(LinkExtractor(allow=(r'http://www.jieyicai.com/Product/Detail.aspx?pid=d+')), callback="parse"),
        ]
    
        def parse(self, response):
            md5_obj = hashlib.md5()
            md5_obj.update(response.url)
            md5_url = md5_obj.hexdigest()
            if md5_url in JieYiCaiSpider.url_set:
                pass
            else:
                JieYiCaiSpider.url_set.add(md5_url)
                
                hxs = HtmlXPathSelector(response)
                if response.url.startswith('http://www.jieyicai.com/Product/Detail.aspx'):
                    item = JieYiCaiItem()
                    item['company'] = hxs.select('//span[@class="username g-fs-14"]/text()').extract()
                    item['qq'] = hxs.select('//span[@class="g-left bor1qq"]/a/@href').re('.*uin=(?P<qq>d*)&')
                    item['info'] = hxs.select('//div[@class="padd20 bor1 comard"]/text()').extract()
                    item['more'] = hxs.select('//li[@class="style4"]/a/@href').extract()
                    item['title'] = hxs.select('//div[@class="g-left prodetail-text"]/h2/text()').extract()
                    yield item
    
                current_page_urls = hxs.select('//a/@href').extract()
                for i in range(len(current_page_urls)):
                    url = current_page_urls[i]
                    if url.startswith('/'):
                        url_ab = JieYiCaiSpider.domain + url
                        yield Request(url_ab, callback=self.parse)

    此处代码的关键在于:

    • 将获取的数据封装在了Item对象中
    • yield Item对象 (一旦parse中执行yield Item对象,则自动将该对象交个pipelines的类来处理)
    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
    
    import json
    from twisted.enterprise import adbapi
    import MySQLdb.cursors
    import re
    
    mobile_re = re.compile(r'(13[0-9]|15[012356789]|17[678]|18[0-9]|14[57])[0-9]{8}')
    phone_re = re.compile(r'(d+-d+|d+)')
    
    class JsonPipeline(object):
    
        def __init__(self):
            self.file = open('/Users/wupeiqi/PycharmProjects/beauty/beauty/jieyicai.json', 'wb')
    
    
        def process_item(self, item, spider):
            line = "%s  %s
    " % (item['company'][0].encode('utf-8'), item['title'][0].encode('utf-8'))
            self.file.write(line)
            return item
    
    class DBPipeline(object):
    
        def __init__(self):
            self.db_pool = adbapi.ConnectionPool('MySQLdb',
                                                 db='DbCenter',
                                                 user='root',
                                                 passwd='123',
                                                 cursorclass=MySQLdb.cursors.DictCursor,
                                                 use_unicode=True)
    
        def process_item(self, item, spider):
            query = self.db_pool.runInteraction(self._conditional_insert, item)
            query.addErrback(self.handle_error)
            return item
    
        def _conditional_insert(self, tx, item):
            tx.execute("select nid from company where company = %s", (item['company'][0], ))
            result = tx.fetchone()
            if result:
                pass
            else:
                phone_obj = phone_re.search(item['info'][0].strip())
                phone = phone_obj.group() if phone_obj else ' '
    
                mobile_obj = mobile_re.search(item['info'][1].strip())
                mobile = mobile_obj.group() if mobile_obj else ' '
    
                values = (
                    item['company'][0],
                    item['qq'][0],
                    phone,
                    mobile,
                    item['info'][2].strip(),
                    item['more'][0])
                tx.execute("insert into company(company,qq,phone,mobile,address,more) values(%s,%s,%s,%s,%s,%s)", values)
    
        def handle_error(self, e):
            print 'error',e

    上述中的pipelines中有多个类,到底Scapy会自动执行那个?哈哈哈哈,当然需要先配置了,不然Scapy就蒙逼了。。。

    在settings.py中做如下配置:

    ITEM_PIPELINES = {
        'beauty.pipelines.DBPipeline': 300,
        'beauty.pipelines.JsonPipeline': 100,
    }
    # 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。
  • 相关阅读:
    使用AntDesignBlazor的Notification等组件
    Blazor入门笔记(6)-组件间通信
    Blazor入门笔记(5)-数据绑定
    Blazor入门笔记(4)-组件的生命周期
    Blazor入门笔记(3)-C#与JS交互
    Blazor入门笔记(2)-分部类组件与组件的继承
    Blazor入门笔记(1)-从0构建一个组件
    添加右键上下文菜单后,点击后需要获取到源控件
    NPOI,给指定的excle创建个下拉框验证
    有的时候,给指定的控件,追加一个装饰器Adorner,备注下
  • 原文地址:https://www.cnblogs.com/fengzaoye/p/5907760.html
Copyright © 2020-2023  润新知