ReentrantLock和synchronized一样都是实现线程同步,但是像比synchronized它更加灵活、强大、增加了轮询、超时、中断等高级功能,可以更加精细化的控制线程同步,它是基于AQS实现的锁,他支持公平锁和非公平锁,同时他也是可重入锁和自旋锁。
本章将基于源码来探索一下ReentrantLock的加锁机制,文中如果存在理解不到位的地方,还请提出宝贵意见共同探讨,不吝赐教。
公平锁和非公平锁的加锁机制流程图:
一、ReentrantLock的公平锁
使用ReentrantLock的公平锁,调用lock进行加锁,lock方法的源码如下:
final void lock() {
acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
可以看到,FairLock首先调用了tryAcquire,tryAcquire源码如下:
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//如果队列中不存在等待的线程或者当前线程在队列头部,则基于CAS进行加锁
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//是否可以进行锁重入
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
从源码中可以看到,当state为0,即没有线程获取到锁时,FairLock首先会调用hasQueuedPredecessors()
方法检查队列中是否有等待的线程或者自己是否在队列头部,如果队列中不存在等待的线程或者自己在队列头部则调用compareAndSetState()
方法基于CAS操作进行加锁,如果CAS操作成功,则调用setExclusiveOwnerThread
设置加锁线程为当前线程。
当state不为0,即有线程占用锁的时候会判断占有锁的线程是否是当前线程,如果是的话则可以直接获取到锁,这就是ReentrantLock
是可重入锁的体现。
如果通过调用tryAcquire没有获取到锁,从源码中我们可以看到,FairLock会调用addWaiter()
方法将当前线程加入CLH队列中,addWaiter方法源码如下:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
//基于CAS将当前线程节点加入队列尾部
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//如果CAS操作失败,则调用enq自旋加入队列
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
在addWaiter方法中,会CAS操作将当前线程节点加入队列尾部,如果第一次CAS失败,则会调用enq方法通过自旋的方式,多次尝试进行CAS操作将当前线程加入队列。
将当前线程加入队列之后,会调用acquireQueued方法实现当前线程的自旋加锁,acquireQueued源码如下:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
在acquireQueued方法中每次自旋首先会调用predecessor()
方法获取,当前线程节点的前节点,如果发现前节点是head节点,则说明当前线程节点处于对头(head是傀儡节点),那么则调用tryAcquire尽心加锁。
如果当前线程节点不在队列头部,那么则会调用shouldParkAfterFailedAcquire
方法判断当前线程节点是否可以挂起知道前节点释放锁时唤醒自己,如果可以挂起,则调用parkAndCheckInterrupt
实现挂起操作。
shouldParkAfterFailedAcquire
源码如下:
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
shouldParkAfterFailedAcquire
源码中,如果当前线程节点的前节点的waitStatus状态为SIGNAL(-1)
时,表明前节点已经设置了释放锁时唤醒(unpark)它的后节点,那么当前线程节点可以安心阻塞(park),等待它的前节点在unlock时唤醒自己继续尝试加锁。
如果前节点的waitStatus状态>0,即为CANCELLED (1)
,表明前节点已经放弃了获取锁,那么则会继续往前找,找到一个能够在unlock时唤醒自己的线程节点为止。如果前节点waitStatus状态是CONDITION (-2)
,即处于等待条件的状态,则会基于CAS尝试设置前节点状态为SIGNAL(主动干预前节点达到唤醒自己的目的)。
parkAndCheckInterrupt
源码:
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
二、ReentrantLock的非公平锁
和公平锁加锁机制不同的是,非公平锁一上来不管队列中是否还存在线程,就直接使用CAS操作进行尝试加锁(这就是它的非公平的体现),源码如下:
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
如果CAS操作失败(一上来就吃了个闭门羹),则调用acquire方法进行后续的尝试和等待。从源码中可以看到,首先回调用tryAcquire方法进行再次尝试加锁或者锁重入,NoFairLockd的tryAcquire方法源码如下:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
可以看到NoFairLock的tryAcquire方法和FairLock的tryAcquire方法唯一不同之处是NoFairLock中尝试加锁前不需要调用hasQueuedPredecessors
方法判断队列中是否存在其他线程,而是直接进行CAS操作加锁。
那么如果再次尝试加锁或者锁重入失败,则会进行后续的和公平锁完全一样的操作流程(不再赘述),即:加入队列(addWaiter)–>自旋加锁(acquireQueued)。另外,关注Java知音公众号,回复“后端面试”,送你一份面试题宝典!
三、unlock解锁
说完了公平锁和非公平锁的加锁机制,我们再顺带简单的看看解锁源码。unlock源码如下:
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
//尝试释放锁
if (tryRelease(arg)) {
Node h = head;
//锁释放成后唤醒后边阻塞的线程节点
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
总结 本文主要探索了公平锁和非公平锁的加锁流程,他们获取锁的不同点和相同点。整篇文章涉及到了以下几点:
- 公平锁、非公平锁加锁过程
- 自旋锁的实现以及自旋过程中的阻塞唤醒
- 可重入锁的实现
- CLH队列
转载:blog.csdn.net/qq_40400960/article/details/114242448