• 人脸检测


    Haar级联分类器

    正常人的脸一定具备眼睛、鼻子、嘴巴等特征,每个特征都做成一个专门的检测分类器,所有分类器串起来,全部检测通过则判定为人脸。

    分类器下载地址:

    https://github.com/opencv/opencv/tree/master/data/haarcascades

    import cv2
    
    #读取待检测的图像
    image = cv2.imread("./111.jpg")
    cv2.imshow("image",image)
    
    # 转灰度图
    gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    
    # 获取级联分类器对象
    faceCascade = cv2.CascadeClassifier('./haarcascades/haarcascade_frontalface_default.xml')
    
    # 检测
    faces = faceCascade.detectMultiScale(gray,1.3,3)
    
    print("发现{}个人脸!".format(len(faces)))
    
    #绘制人脸框
    for(x,y,w,h) in faces:
        cv2.rectangle(image,(x,y),(x+w,y+w),(0,0,255),2)
    
    #显示
    cv2.imshow("result",image)
    cv2.waitKey(0)

    运行结果:

    SSD检测器

    SSD检测器是基于深度学习一种检测方式,通过卷积神经网络对图像特征进行检测。

    模型下载地址:

    https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/weights.meta4

    配置文件下载地址:

    https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector

    import cv2
    
    #载入模型
    model_file = "res10_300x300_ssd_iter_140000_fp16.caffemodel"
    config_file = "deploy.prototxt"
    net = cv2.dnn.readNetFromCaffe(config_file,model_file)
    threshold = 0.9
    
    #读取待检测的图像
    img = cv2.imread("./112.jpg")
    cv2.imshow('img',img)
    
    frameHeight = img.shape[0]
    frameWidth = img.shape[1]
    
    #预处理
    blob = cv2.dnn.blobFromImage(img,0.8,(505,505),[104,117,123],False,False)
    
    #检测
    net.setInput(blob)
    detections = net.forward()
    
    #标记人脸区域
    for i in range(detections.shape[2]):
        detection_score = detections[0,0,i,2]
        if detection_score > threshold:
            x1 = int(detections[0,0,i,3] * frameWidth)
            y1 = int(detections[0,0,i,4] * frameHeight)
            x2 = int(detections[0,0,i,5] * frameWidth)
            y2 = int(detections[0,0,i,6] * frameHeight)
            cv2.rectangle(img,(x1,y1),(x2,y2),(0,0,255),2)
    
    cv2.imshow('result',img)
    cv2.waitKey(0)

    运行结果:

    Dlib检测器

    dlib依赖于cmake和scikit-image,先把依赖装了再装dlib.

    import cv2
    import dlib
    
    #读取待检测的图像
    img = cv2.imread("./timg.jpg")
    cv2.imshow('img',img)
    
    #获取检测器
    detector = dlib.get_frontal_face_detector()
    
    #检测
    faceRects = detector(img,1)
    
    #标记人脸区域
    for faceRect in faceRects:
        x1 = faceRect.left()
        y1 = faceRect.top()
        x2 = faceRect.right()
        y2 = faceRect.bottom()
        cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
    
    cv2.imshow('result',img)
    cv2.waitKey(0)

    运行结果:

  • 相关阅读:
    JavaScript得到当前窗口的所有大小值
    JavaScript 变量、作用域和内存问题
    jQuery html5Validate基于HTML5表单验证插件
    新世界
    2001年的火花
    High Dynamic Range Compression on Programmable Graphics Hardware
    运筹帷幄
    你还要在学校找什么东西?
    图行天下
    Supra Team
  • 原文地址:https://www.cnblogs.com/fengyumeng/p/14353929.html
Copyright © 2020-2023  润新知