题目
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
解题思路
-
当(i, j)有障碍时dp[i][j] = 0
-
dp[0][j]和dp[i][0]未必为1.
dp[0][j] = obstacleGrid[0][j] ? 0 : dp[0][j-1]
dp[i][0] = obstacleGrid[i][0] ? 0 : dp[i-1][0] -
当obstacleGrid [0][0] = 1时,return 0
解题代码
class Solution {
public:
int uniquePathsWithObstacles(const vector<vector<int>>& obstacleGrid) const {
if (obstacleGrid[0][0] == 1) return 0;
vector<int>::size_type m = obstacleGrid.size();
vector<int>::size_type n = obstacleGrid[0].size();
vector<vector<int>> table(m, vector<int>(n));
for (vector<int>::size_type i = 1; i < m; i++) {
//table[i-1][0] 对于 table[i][0] 非常重要,决定了后面节点是否可达
table[i][0] = (table[i - 1][0] && obstacleGrid[i][0] == 0) ? 1 : 0;
}
for (vector<int>::size_type i = 1; i < n; i++) {
//table[0][i] 对于 table[0][i-1] 非常重要,决定了后面节点是否可达
table[0][i] = (table[0][i - 1] && obstacleGrid[0][i] == 0) ? 1 : 0;
}
for (vector<int>::size_type i = 1; i < m; i++) {
for (vector<int>::size_type j = 1; j < n; j++) {
table[i][j] = table[i][j - 1] + table[i - 1][j];
if (obstacleGrid[i][j] == 1)
table[i][j] = 0;
}
}
return obstacleGrid[m - 1][n - 1] ? 0 : table[m - 1][n - 1];
}
};