题目链接:戳我
一个2-SAT的模板题。
(什么是2-SAT呢?就是解决一个情况两种决策的问题,我们根据“选了其中一个点A就必须选一个点B的原则,从A向B连边。最后判断如果在一个强连通分量里面,就是无解。”)
注意一下输入的转换就好啦!QAQ
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 1010
struct Line{int v,next;}e[100000];
int h[MAX],cnt=1,T;
inline void add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,a[MAX][2];
inline int get()
{
char s[10];
int cur=0,x=0;
scanf("%s",s);
if(s[0]=='m') cur=n;
for(int i=1,len=strlen(s);i<len;i++)
x=x*10+s[i]-'0';
x+=cur;
return x;
}
bool id[MAX][MAX];
int dfn[MAX],low[MAX],st[MAX],top,tim,G[MAX];
bool ins[MAX];
void init()
{
memset(id,0,sizeof(id));
memset(h,0,sizeof(h));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(ins,0,sizeof(ins));
memset(G,0,sizeof(G));
cnt=0;top=tim=0;
}
inline void tarjan(int x)
{
dfn[x]=low[x]=++tim;
st[++top]=x;
ins[x]=1;
for(int i=h[x];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v]) tarjan(v),low[x]=min(low[x],low[v]);
else if(ins[v]) low[x]=min(low[x],dfn[v]);
}
if(dfn[x]==low[x])
{
int v;
++cnt;
if(st[top]==x) {G[x]=cnt;ins[x]=0;top--;}
else
{
do
{
v=st[top];
top--;
G[v]=cnt;
ins[v]=0;
// printf("cnt=%d v=%d
",cnt,v);
}while(v!=x);
}
}
}
bool check()
{
for(int i=1;i<=n;++i)
if(G[i]==G[i+n])return false;
return true;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;++i)a[i][0]=get(),a[i][1]=get();
for(int i=1;i<=m;++i)
for(int j=i+1;j<=m;++j)
{
if(abs(a[i][0]-a[j][0])==n)
id[a[i][0]][a[j][1]]=id[a[j][0]][a[i][1]]=1;
if(abs(a[i][0]-a[j][1])==n)
id[a[i][0]][a[j][0]]=id[a[j][1]][a[i][1]]=1;
if(abs(a[i][1]-a[j][0])==n)
id[a[i][1]][a[j][1]]=id[a[j][0]][a[i][0]]=1;
if(abs(a[i][1]-a[j][1])==n)
id[a[i][1]][a[j][0]]=id[a[j][1]][a[i][0]]=1;
}
for(int i=1;i<=n+n;++i)
for(int j=1;j<=n+n;++j)
if(id[i][j])
add(i,j);
for(int i=1;i<=n+n;++i)
if(!dfn[i])
tarjan(i);
if(check()) printf("GOOD
");
else printf("BAD
");
}
}