• 算法竞赛入门经典 写题笔记(第二章 数学基础)


    Chess Queen

    组合数

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #define MAXN 100010
    using namespace std;
    int n,m;
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	while(scanf("%d%d",&n,&m)==2)
    	{
    		if(n==0&&m==0) break;
    		long long cur_ans=0;
    		if(n>m) swap(n,m);
    		for(int i=1;i<=n-1;i++) cur_ans+=1ll*i*(i-1);
    		// printf("cur_ans=%lld
    ",cur_ans);
    		printf("%lld
    ",1ll*(cur_ans)*4+1ll*n*m*(n+m-2)+1ll*2*(m-n+1)*n*(n-1));
    	}
    	return 0;
    }
    
    

    例题2 Triangle Counting

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 1000010
    using namespace std;
    int n;
    long long dp[MAXN];
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	dp[3]=0;
    	for(int i=4;i<=1000000;i++)
    		dp[i]=dp[i-1]+(1ll*(i-1)*(i-2)/2-(i-1)/2)/2;
    	while(scanf("%d",&n)==1)
    	{
    		if(n<3) break;
    		printf("%lld
    ",dp[n]);
    	}
    	return 0;
    }
    

    例题3 Cheerleaders

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #define MAXN 500
    #define mod 1000007
    using namespace std;
    int T,n,m,k,kase;
    int c[MAXN+10][MAXN+10];
    inline void init()
    {
    	for(int i=0;i<=MAXN;i++) c[i][0]=c[i][i]=1;
    	for(int i=2;i<=MAXN;i++)
    		for(int j=1;j<i;j++)
    			c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	scanf("%d",&T);
    	init();
    	while(T--)
    	{
    		scanf("%d%d%d",&n,&m,&k);
    		int cur_ans=0;
    		kase++;
    		for(int i=0;i<(1<<4);i++)
    		{
    			int op=0,nn=n,mm=m;
    			if(i&(1<<0)) op++,nn--;
    			if(i&(1<<1)) op++,nn--;
    			if(i&(1<<2)) op++,mm--;
    			if(i&(1<<3)) op++,mm--;
    			if(op&1) cur_ans=(cur_ans+mod-c[nn*mm][k])%mod;
    			else cur_ans=(cur_ans+c[nn*mm][k])%mod;
    		}
    		printf("Case %d: %d
    ",kase,cur_ans);
    	}
    	return 0;
    }
    
    

    例题4 Exploring Pyramids

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #define MAXN 310
    #define mod (int)1e9
    using namespace std;
    int dp[MAXN][MAXN],done[MAXN][MAXN];
    char s[MAXN];
    inline int solve(int l,int r)
    {
        // printf("l=%d r=%d
    ",l,r);
        if(l==r) return 1;
        if(s[l]!=s[r]) return 0;
        if(done[l][r]) return dp[l][r];
        done[l][r]=1;
        for(int k=l+2;k<=r;k++)
            if(s[l]==s[k])
                dp[l][r]=(dp[l][r]+1ll*solve(l+1,k-1)*solve(k,r)%mod)%mod;
        return dp[l][r];
    }
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        while(scanf("%s",s+1)!=EOF)
        {
            memset(dp,0,sizeof(dp));
            memset(done,0,sizeof(done));
            printf("%d
    ",solve(1,strlen(s+1)));
        }
        return 0;
    }
    

    例题5 Investigating Div-Sum Property

    数位DP
    (dp[i][m1][m2])表示i位,数位之和为m1,数值为m2的种类数。
    (dp[i][m1][m2]=sum{dp[i-1][(m1-x)mod k][(m2-x*10^{i-1})mod k]})

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 110
    using namespace std;
    int a,b,cnt,k,T;
    int num[MAXN];
    long long dp[MAXN][MAXN][MAXN];
    long long fpow[15]={0,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000};
    inline long long calc(int len,int m1,int m2,int limit)
    {
    	if(len<=0) 
    	{
    		if(m1==0&&m2==0) return 1;
    		else return 0;
    	}
    	if(!limit&&dp[len][m1][m2]>=0) return dp[len][m1][m2];
    	int maxx=(limit==1)?num[len]:9;
    	long long cur_ans=0;
    	for(int i=0;i<=maxx;i++)
    	{
    		int cur=m2-i*pow(10,len-1);
    		cur=(cur+((-cur)/k+1)*k)%k;
    		cur_ans+=calc(len-1,(m1-i+k)%k,cur%k,limit==1&&i==maxx);
    	}
    	if(!limit) dp[len][m1][m2]=cur_ans;
    	return cur_ans;
    }
    inline long long solve(int x)
    {
    	cnt=0;
    	memset(num,0,sizeof(num));
    	memset(dp,-1,sizeof(dp));
    	while(x)
    	{
    		num[++cnt]=x%10;
    		x/=10;
    	}
    	long long ans=calc(cnt,0,0,1);
    	return ans;
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	freopen("ce.out","w",stdout);
    	#endif
    	scanf("%d",&T);
    	while(T--)
    	{
    		scanf("%d%d%d",&a,&b,&k);
    		if(k>81) printf("0
    ");
    		else printf("%lld
    ",solve(b)-solve(a-1));
    	}
    	return 0;
    }
    

    例题6 Glenbow Museum

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 3010
    using namespace std;
    int n,cnt;
    long long c[MAXN][MAXN];
    inline void init()
    {
    	for(int i=0;i<=MAXN-10;i++) c[i][0]=c[i][i]=1;
    	for(int i=1;i<=MAXN-10;i++)
    		for(int j=1;j<=MAXN-10;j++)
    			c[i][j]=c[i-1][j-1]+c[i-1][j];
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	init();
    	while(scanf("%d",&n)==1&&n)
    	{
    		long long ans;
    		if((n&1)||n<4) ans=0;
    		else ans=c[(n+4)/2][4]+c[(n+4)/2-1][4];
    		printf("Case %d: %lld
    ",++cnt,ans);
    	}
    	return 0;
    }
    

    例题6 Series-Parallel Networks

    例题7 Always an integer

    例题8 GCD - Extreme (II)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<ctime>
    #define MAXN 1000010
    #define int long long
    using namespace std;
    int cnt,kase;
    int ci[MAXN],xi[MAXN];
    char s[MAXN];
    inline int calc(int x,int mod)
    {
    	int ans=0;
    	for(int i=1;i<=cnt;i++)
    	{
    		int cur_ans=1;
    		for(int j=1;j<=ci[i];j++)
    			cur_ans=1ll*cur_ans*x%mod;
    		ans=(ans+cur_ans*xi[i])%mod;
    	}    
    	if(ans==0) return true;
    	else return false;
    }
    signed main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	while(scanf("%s",s))
    	{
    		if(s[0]=='.') break;
    		int f=1,cur_sum=0,pos=1;
    		cnt=0;
    		if(s[1]!='-') s[0]='+';
    		for(int i=0,len=strlen(s);i<len;)
    		{
    			if(s[i]=='-'||s[i]=='+') 
    			{
    				if(s[i]=='-') f=-1;
    				else f=1;   
    				i++;
    				cur_sum=0;
    				while(s[i]>='0'&&s[i]<='9')
    				{
    					cur_sum=cur_sum*10+s[i]-'0';
    					i++;
    				}
    				if(cur_sum==0) cur_sum=1;
    				xi[++cnt]=cur_sum*f;
    				if(s[i]=='n') i++;
    				if(s[i]=='^')
    				{
    					i++,cur_sum=0;
    					while(s[i]>='0'&&s[i]<='9')
    					{
    						cur_sum=cur_sum*10+s[i]-'0';
    						i++;
    					}
    					ci[cnt]=cur_sum;
    				}
    				else if(s[i]!='^') ci[cnt]=1;
    				continue;
    			} 
    			if(s[i]=='/') {pos=i;break;}
    			i++;
    		}
    		cur_sum=0;
    		for(int i=pos+1,len=strlen(s);i<len;i++) cur_sum=cur_sum*10+s[i]-'0';
    //		printf("cur_sum=%d
    ",cur_sum);
    //		for(int i=1;i<=cnt;i++) printf("xi[%d]=%d
    ",i,xi[i]);
    //		for(int i=1;i<=cnt;i++) printf("ci[%d]=%d
    ",i,ci[i]);
    		bool flag=true;
    		for(int i=1;i<=max(1ll,ci[1]+1);i++)
    		{
    			if(calc(i,cur_sum)==false) 
    			{
    				flag=false;
    				break;
    			}
    		}
    		if(flag==true) printf("Case %d: Always an integer
    ",++kase);
    		else printf("Case %d: Not always an integer
    ",++kase);
    	}
    	return 0;
    }
    

    例题9 Code Feat

    例题10 Emoogle Grid

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<map>
    #include<set>
    #define ll long long
    #define MAXN 100010
    #define MOD 100000007
    using namespace std;
    ll n,k,b,r,maxx,T,kase;
    ll x[MAXN],y[MAXN];
    set<pair<int,int> >se;
    inline ll fpow(ll x,ll y,ll mod)
    {
    	ll cur_ans=1;
    	while(y)
    	{
    		if(y&1){cur_ans=cur_ans*x%mod;}
    		x=x*x%mod;
    		y>>=1;
    	}
    	return cur_ans;
    }
    inline ll bsgs(ll y,ll z,ll mod)
    {
    	z%=mod,y%=mod;
    	if(z==1) return 0;
    	map<long long,int>M;
    	ll m=(ll)sqrt(mod)+1;
    	for(int i=0,t=z;i<m;i++,t=1ll*t*y%mod) M[t]=i;
    	for(int i=1,tt=fpow(y,m,mod),t=tt;i<m;i++,t=1ll*tt*t%mod) 
    		if(M.count(t))
    			return i*m-M[t];
    	return -1;
    }
    inline ll calc()
    {
    	ll cur_ans=0;
    	for(int i=1;i<=b;i++)
    		if(x[i]!=maxx&&!se.count(make_pair(x[i]+1,y[i]))) 
    			cur_ans++;
    	cur_ans+=n;
    	for(int i=1;i<=b;i++) 
    		if(x[i]==1)
    			cur_ans--;
    	return (fpow(k,cur_ans,MOD)*fpow(k-1,maxx*n-cur_ans-b,MOD)%MOD)%MOD;
    }
    inline ll solve()
    {
    	ll pre_ans=calc();
    	if(pre_ans==r) return maxx;
    	ll tmp=n;
    	for(int i=1;i<=b;i++) 
    		if(x[i]==maxx)
    			tmp--;
    	ll cur_ans=(fpow(k-1,tmp,MOD)*fpow(k,n-tmp,MOD))%MOD;
    	cur_ans=pre_ans*cur_ans%MOD;
    	if(cur_ans==r) return maxx+1;
    	return bsgs(fpow(k-1,n,MOD),r*fpow(cur_ans,MOD-2,MOD)%MOD,MOD)+maxx+1;
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	scanf("%lld",&T);
    	while(T--)
    	{
    		scanf("%lld%lld%lld%lld",&n,&k,&b,&r);
    		se.clear();
    		maxx=1;
    		for(int i=1;i<=b;i++)
    		{
    			scanf("%lld%lld",&x[i],&y[i]);
    			se.insert((make_pair)(x[i],y[i]));
    			maxx=max(maxx,x[i]);
    		}
    		printf("Case %lld: %lld
    ",++kase,solve());
    	}
    	return 0;
    }
    

    例题11 Playing With Stones

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 110
    using namespace std;
    int T,n;
    long long a[MAXN];
    inline long long sg(long long x)
    {
        if(x&1) return sg(x/2);
        else return x/2;
    }
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            long long cur_ans=0;
            for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
            for(int i=1;i<=n;i++) cur_ans^=sg(a[i]);
            if(cur_ans) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    

    例题12 Treblecross

    SG函数方案输出

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<vector>
    #define MAXN 210
    using namespace std;
    int T,len;
    int sg[MAXN];
    char s[MAXN],cur[MAXN];
    vector<int>vec;
    inline int calc(int x)
    {
    	if(x<0) return 0;
    	if(sg[x]!=-1) return sg[x];
    	int done[MAXN];
    	memset(done,0,sizeof(done));
    	for(int i=1;i<=x;i++)
    		done[calc(x-i-2)^calc(i-3)]=1;
    	for(int i=0;;i++)
    		if(done[i]==0)
    		{
    			return sg[x]=i;
    		}
    }
    inline bool solve(int x)
    {
    	if(s[x]=='X') return false;
    	for(int i=1;i<=len;i++) cur[i]=s[i];
    	cur[x]='X';
    	for(int i=1;i<=len-2;i++)
    		if(cur[i]=='X'&&cur[i+1]=='X'&&cur[i+2]=='X') return true;
    	for(int i=1;i<=len-1;i++)
    		if(cur[i]=='X'&&cur[i+1]=='X') return false;
    	for(int i=1;i<=len-2;i++)
    		if(cur[i]=='X'&&cur[i+2]=='X') return false;
    	int ans=0,flag=0,w=2,cnt=-1;
    	for(int i=len;i>=1;i--) 
    		if(cur[i]=='X') 
    		{
    			cnt=i;
    			break;
    		}
    	for(int j,i=1;i<=len;i++) 
    	{
    		if(i>cnt) w=0;
    		if(cur[i]=='X') flag=2;
    		if(cur[i]!='.') continue;
    		for(j=i;j<=len&&cur[j]=='.';j++);
    		ans^=calc(j-i-flag-w);
    		i=j-1;
    	}
    	if(ans==0) return true;
    	else return false;
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	freopen("ce.out","w",stdout);
    	#endif
    	memset(sg,-1,sizeof(sg));
    	scanf("%d",&T);
    	while(T--)
    	{
    		scanf("%s",(s+1));
    		len=strlen((s+1));
    		vec.clear();
    		for(int i=1;i<=len;i++)
    		{
    			if(solve(i)==true)
    				vec.push_back(i);
    		}
    		if(vec.size())
    		{
    			printf("WINNING
    ");
    			for(int i=0;i<vec.size()-1;i++)
    				printf("%d ",vec[i]);
    			printf("%d
    ",vec[vec.size()-1]);
    		}
    		else printf("LOSING
    
    ");
    	} 
    	return 0;
    }
    

    例题13 Tribles

    #include<iostream>
    #include<cstdio>
    #include<queue> 
    #include<cstring>
    #include<cmath>
    #define MAXN 1010
    using namespace std;
    int t;
    double f[MAXN],p[MAXN];
    int main()
    {
        scanf("%d",&t);
        for(int cnt=1;cnt<=t;cnt++)
        {
            int n,k,m;
            scanf("%d%d%d",&n,&k,&m);
            memset(f,0,sizeof(f));
            for(int i=0;i<n;i++) scanf("%lf",&p[i]);
            f[1]=p[0];
            for(int i=2;i<=m;i++)
                for(int j=0;j<n;j++) 
                    f[i]+=p[j]*pow(f[i-1],j);
            printf("Case #%d: %.7lf
    ",cnt,pow(f[m],k));
        }	
        
        return 0;
    }
    
    

    例题14 Joining with Friend

    几何概率+巧妙的分类讨论(其实这种讨论方法我是从别人那里抄的)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 100010
    using namespace std;
    int T,kase;
    double t1,t2,s1,s2,ans;
    inline double calc(double w)
    {
        double cur_ans=0.0;
        if(s2>t2+w&&s1>t1+w)
        {
            double cur=max(0.0,t2+w-s1);
            cur_ans+=ans-cur*cur*0.5;
        }
        else if(s2>t2+w)
        {
            double cur=s2-(t1+w)+s2-(t2+w);
            cur_ans+=cur*(t2-t1)*0.5;
        }
        else if(s1>t1+w)
        {
            double cur=(s1-w)-t1+(s2-w)-t1;
            cur_ans+=(s2-s1)*cur*0.5;
        }
        else
        {
            double cur=max(0.0,s2-w-t1);
            cur_ans+=cur*cur*0.5;
        }
        if(w<0) cur_ans=ans-cur_ans;
        // printf("cur_ans=%lf
    ",cur_ans);
        return cur_ans;
    }
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        scanf("%d",&T);
        while(T--)
        {
            double w;
            scanf("%lf%lf%lf%lf%lf",&t1,&t2,&s1,&s2,&w);
            // printf("%lf %lf %lf %lf %lf
    ",t1,t2,s1,s2,w);
            ++kase;
            ans=0.0;
            double cur_ans=0.0;
            ans=fabs(t1-t2)*fabs(s1-s2);
            cur_ans+=calc(w)+calc(-w);
            // printf("end cur_ans=%lf
    ",cur_ans);
            printf("Case #%d: %.8lf
    ",kase,1-cur_ans/ans);
        }
        return 0;
    }
    

    例题15 Expect the Expected

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define eps 1e-8
    #define MAXN 110
    using namespace std;
    int T,n,a,b,kase;
    double p;
    double dp[MAXN][MAXN];
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d/%d%d",&a,&b,&n);
            kase++;
            p=1.0*a/b;
            // printf("p=%lf
    ",p);
            for(int i=0;i<=100;i++)
                for(int  j=0;j<=100;j++)
                    dp[i][j]=0.0;
            dp[0][0]=1.0;
            for(int i=1;i<=n;i++)
            {
                for(int j=0;j*b<=a*i;j++)
                {
                    dp[i][j]+=dp[i-1][j]*(1.0-p);
                    if(j) dp[i][j]+=dp[i-1][j-1]*p;
                    // printf("dp[%d][%d]=%lf
    ",i,j,dp[i][j]);
                }
            }
            double ans=0.0;
            for(int j=0;j*b<=a*n;j++) ans+=dp[n][j];
            printf("Case #%d: %d
    ",kase,(int)(1/ans));
        }
        return 0;
    }
    

    例题16 Race to 1

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define eps 1e-8
    #define MAXN 110
    using namespace std;
    int T,n,a,b,kase;
    double p;
    double dp[MAXN][MAXN];
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d/%d%d",&a,&b,&n);
            kase++;
            p=1.0*a/b;
            // printf("p=%lf
    ",p);
            for(int i=0;i<=100;i++)
                for(int  j=0;j<=100;j++)
                    dp[i][j]=0.0;
            dp[0][0]=1.0;
            for(int i=1;i<=n;i++)
            {
                for(int j=0;j*b<=a*i;j++)
                {
                    dp[i][j]+=dp[i-1][j]*(1.0-p);
                    if(j) dp[i][j]+=dp[i-1][j-1]*p;
                    // printf("dp[%d][%d]=%lf
    ",i,j,dp[i][j]);
                }
            }
            double ans=0.0;
            for(int j=0;j*b<=a*n;j++) ans+=dp[n][j];
            printf("Case #%d: %d
    ",kase,(int)(1/ans));
        }
        return 0;
    }
    

    例题18 Arif in Dhaka (First Love Part 2)

    旋转
    如果旋转k个的话,相当于(i)((i+k)%n)在一个循环中,假设t的时候第一次完成了一次循环,所以(tk\%n=0),所以(t_{min}=frac{n}{gcd(n,k)}),所以循环中有t个元素,一共(gcd(n,k))个循环。这些置换的不动点为(sum_{i=0}^{n-1}t^{gcd(i,n)})

    翻转
    当n为奇数的时候,对称轴有n条,每条对称轴形成(n-1)/2个长度为2的循环,和1个长度为1的循环。所以一共是(nt^{frac{n+1}{2}})个不动点。
    当n为偶数的时候,穿过珠子的对称轴有(n/2)条,形成(n/2-1)个长度为2的循环和1个长度为1的循环;不穿过珠子的对称轴有(n/2)条,形成(n/2)个长度为2的循环。所以不动点的个数为(frac{n}{2}(t^{n/2+1}+t^{n/2}))

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define MAXN 110
    using namespace std;
    int n,t;
    long long pow[MAXN];
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("ce.in","r",stdin);
        #endif
        while(scanf("%d%d",&n,&t)==2)
        {
            if(n==0) break;
            memset(pow,0,sizeof(pow));
            pow[0]=1;
            for(int i=1;i<=n;i++) pow[i]=pow[i-1]*t;
            long long ans1=0,ans2=0;
            for(int i=0;i<n;i++) ans1+=pow[__gcd(n,i)];
            if(n&1) ans2=n*pow[(n+1)/2];
            else ans2=(n/2)*(pow[n/2+1]+pow[n/2]);
            printf("%lld %lld
    ",ans1/n,(ans1+ans2)/2/n);
        }
        return 0;
    }
    

    然后根据polya定理,除以n即可。

    例题19 Leonardo's Notebook

    例题20 Find the Permutations

    把原来的序列看做一个置换,它可以分解成为循环。一个元素不需要交换,两个元素的循环需要交换1次,n个元素的循环需要交换n-1次,所以该1-n的排列分解成x个循环,就需要n-x次交换。所以我们现在求出来循环的个数就行了。因为循环就等于圆排列,所以我们利用第一类斯特林数求出来圆排列的个数即可。
    初始化(dp[1][1]=1)因为1个元素组成1个圆排列的种类数为1.
    递推方程(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(i-1))

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 21
    using namespace std;
    int n,k;
    unsigned long long dp[MAXN+10][MAXN+10];
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	freopen("ce.out","w",stdout);
    	#endif
    	dp[1][1]=1;
    	for(int i=2;i<=MAXN;i++)
    	{
    		for(int j=1;j<=i;j++)
    		{
    			dp[i][j]=dp[i-1][j-1];
    			if(j>0) dp[i][j]+=dp[i-1][j]*(i-1);
    		}
    	}
    	while(scanf("%d%d",&n,&k)==2)
    	{
    		if(n==0&&k==0) break;
    		cout<<dp[n][n-k]<<endl;
    	}
    	return 0;
    }
    

    例题20 Pixel Shuffle

    例题21 Recurrences

    例题22 Cellular Automaton

    例题23 Back to Kernighan-Ritchie

    例题24 Square

    例题25 solve It

    火柴(uva11375)

    用n(1<=n<=2000)根火柴棍能组成多少个非负整数?火柴不必用完,组成的整数不能有前导零(但整数0是允许的)。比如,若你有3根火柴,可以组成1或7,如果有4根,除了可以组成1和7之外,还可以组成4和11.

    立方数之和:(uva11137)

    输入正整数n(n<=10000),求将n分成若干个正整数的立方和有多少种方法qwq

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 10010
    using namespace std;
    int n;
    long long dp[22][MAXN];
    inline void solve()
    {
    	memset(dp,0,sizeof(dp));
    	dp[0][0]=1;
    	for(int i=1;i<=21;i++)
    		for(int j=0;j<=MAXN-10;j++)
    			for(int k=0;j+k*i*i*i<=MAXN-10;k++)
    				dp[i][j+k*i*i*i]+=dp[i-1][j];
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	solve();
    	while(scanf("%d",&n)!=EOF)
    	{
    		printf("%lld
    ",dp[21][n]);
    	}                                                 
    	return 0;
    }
    

    效率改进版(有点完全背包的思想)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define MAXN 10010
    using namespace std;
    int n;
    long long dp[22][MAXN];
    inline void solve()
    {
    	memset(dp,0,sizeof(dp));
    	dp[0][0]=1;
    	for(int i=1;i<=21;i++)
    	{
    		for(int j=0;j<=MAXN-10;j++)
    		{
    			dp[i][j]+=dp[i-1][j];
    			if(j-i*i*i>=0) dp[i][j]+=dp[i][j-i*i*i];
    			else continue;
    		}
    	}
    }
    int main()
    {
    	#ifndef ONLINE_JUDGE
    	freopen("ce.in","r",stdin);
    	#endif
    	solve();
    	while(scanf("%d",&n)!=EOF)
    	{
    		printf("%lld
    ",dp[21][n]);
    	}                                                 
    	return 0;
    }
    

    村民排队(uva11174)

    村子里现在有n(1<=n<=40000)个人,有多少种方式可以把它们排成一列,使得没有人排在他父亲前面(有些人的父亲可能不在村子里)?输入n和每个人的父亲编号(村子里的人编号为1-n),输出方案总数除以1e9+7的余数)

    带标号连通图计数

    统计有n(n<=50)个顶点的连通图有多少个。图的顶点有编号。例如n=3时有4个不同的图。

  • 相关阅读:
    出队列操作
    出队列操作
    栈和队列7 数据结构和算法29
    KE上传图片
    asp.net常用快捷键
    基于jquery框架实现以下行的向上、向下和删除
    each的用法积累
    JTemplate使用2
    kindeditor API ,kindeditor使用手册,kindeditor函数,kindeditor使用,超级大收集(转载)
    线上帮助
  • 原文地址:https://www.cnblogs.com/fengxunling/p/10697977.html
Copyright © 2020-2023  润新知