有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]。
对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor ... xor arr[Ri])作为本次查询的结果。
并返回一个包含给定查询 queries 所有结果的数组。
示例 1:
输入:arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
输出:[2,7,14,8]
解释:
数组中元素的二进制表示形式是:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
查询的 XOR 值为:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8
示例 2:输入:arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
输出:[8,0,4,4]
提示:
1 <= arr.length <= 3 * 10^4
1 <= arr[i] <= 10^9
1 <= queries.length <= 3 * 10^4
queries[i].length == 2
0 <= queries[i][0] <= queries[i][1] < arr.length来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/xor-queries-of-a-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
public int[] xorQueries(int[] arr, int[][] queries) { int xor[] = new int[arr.length+1]; for(int i =0; i < arr.length ; i++){ xor[i+1] = xor[i] ^ arr[i]; } //得到一个异或的数组 xor int length = queries.length; int reslut[] = new int[length]; for(int i = 0; i < length ;i++){ //这里是精髓 //相同的数字异或结果为0 reslut[i] = xor[queries[i][0]] ^ xor[queries[i][1] + 1]; } return reslut; }
时间复杂度:O(n)
空间复杂度:O(n) - 借助了中间数组