题目:(Backtracking)
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]
. Its gray code sequence is:
00 - 0 01 - 1 11 - 3 10 - 2
Note:
For a given n, a gray code sequence is not uniquely defined.
For example, [0,2,3,1]
is also a valid gray code sequence according to the above definition.
For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.
题解:
参考引用http://www.lifeincode.net/programming/leetcode-gray-code-java/
We can see that the last two digits of 4 codes at the bottom is just the descending sequence of the first 4 codes. The first 4 codes are 0, 1, 3, 2. So, we can easily get the last 4 codes: 2 + 4, 3 + 4, 1 + 4, 0 + 4, which is 6, 7, 5, 4. We can keep doing this until we reach n digits.
要解决这个问题先看一下greycode的规律
当n=1:
0
1
当n=2:
00
01
11
10
当 n = 3:
000
001
011
010
110
111
101
100
然后我们可以发现一个规律,当n每增加1的时候,
其实就是:1.把n-1的所有元素前面加上一个0. 2.将n-1的所有元素倒序排列以后前面加上1。
例如当 n=2时 n-1 为
0
1
所有第一步将n-1的所有元素前面加上一个0
00
01
第二步将n-1的所有元素倒序排列以后前面加上1
11
10
然后因为要转化成十进制的数,第一步前面加0,就是加0,就是什么都不要加。第二步前面要加1,正好就是加上 n-1 的所有元素的 数目。
所以代码如下:
public class Solution { public List<Integer> grayCode(int n) { List<Integer> ret = new LinkedList<>(); ret.add(0); for (int i = 0; i < n; i++) { int size = ret.size(); for (int j = size - 1; j >= 0; j--) ret.add(ret.get(j) + size); } return ret; } }