• Java版SMS4加密算法


    SMS4简介:

    本算法是一个分组算法。该算法的分组长度为128比特,密钥长度为128比特,也就是16个字节。加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。所有在SMS4的基础类中,你会看到加密和解密的基础函数是同一个,只是需要一个int型的标志位来判断是加密还是解密。

    SMS4加密算法基础类:

    public class SMS4 {
    
        private static final int ENCRYPT = 1;
        private static final int DECRYPT = 0;
        public static final int ROUND = 32;
        private static final int BLOCK = 16;
    
        private byte[] Sbox = { (byte) 0xd6, (byte) 0x90, (byte) 0xe9, (byte) 0xfe,
                (byte) 0xcc, (byte) 0xe1, 0x3d, (byte) 0xb7, 0x16, (byte) 0xb6,
                0x14, (byte) 0xc2, 0x28, (byte) 0xfb, 0x2c, 0x05, 0x2b, 0x67,
                (byte) 0x9a, 0x76, 0x2a, (byte) 0xbe, 0x04, (byte) 0xc3,
                (byte) 0xaa, 0x44, 0x13, 0x26, 0x49, (byte) 0x86, 0x06,
                (byte) 0x99, (byte) 0x9c, 0x42, 0x50, (byte) 0xf4, (byte) 0x91,
                (byte) 0xef, (byte) 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43,
                (byte) 0xed, (byte) 0xcf, (byte) 0xac, 0x62, (byte) 0xe4,
                (byte) 0xb3, 0x1c, (byte) 0xa9, (byte) 0xc9, 0x08, (byte) 0xe8,
                (byte) 0x95, (byte) 0x80, (byte) 0xdf, (byte) 0x94, (byte) 0xfa,
                0x75, (byte) 0x8f, 0x3f, (byte) 0xa6, 0x47, 0x07, (byte) 0xa7,
                (byte) 0xfc, (byte) 0xf3, 0x73, 0x17, (byte) 0xba, (byte) 0x83,
                0x59, 0x3c, 0x19, (byte) 0xe6, (byte) 0x85, 0x4f, (byte) 0xa8,
                0x68, 0x6b, (byte) 0x81, (byte) 0xb2, 0x71, 0x64, (byte) 0xda,
                (byte) 0x8b, (byte) 0xf8, (byte) 0xeb, 0x0f, 0x4b, 0x70, 0x56,
                (byte) 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, (byte) 0xd1,
                (byte) 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, (byte) 0x87,
                (byte) 0xd4, 0x00, 0x46, 0x57, (byte) 0x9f, (byte) 0xd3, 0x27,
                0x52, 0x4c, 0x36, 0x02, (byte) 0xe7, (byte) 0xa0, (byte) 0xc4,
                (byte) 0xc8, (byte) 0x9e, (byte) 0xea, (byte) 0xbf, (byte) 0x8a,
                (byte) 0xd2, 0x40, (byte) 0xc7, 0x38, (byte) 0xb5, (byte) 0xa3,
                (byte) 0xf7, (byte) 0xf2, (byte) 0xce, (byte) 0xf9, 0x61, 0x15,
                (byte) 0xa1, (byte) 0xe0, (byte) 0xae, 0x5d, (byte) 0xa4,
                (byte) 0x9b, 0x34, 0x1a, 0x55, (byte) 0xad, (byte) 0x93, 0x32,
                0x30, (byte) 0xf5, (byte) 0x8c, (byte) 0xb1, (byte) 0xe3, 0x1d,
                (byte) 0xf6, (byte) 0xe2, 0x2e, (byte) 0x82, 0x66, (byte) 0xca,
                0x60, (byte) 0xc0, 0x29, 0x23, (byte) 0xab, 0x0d, 0x53, 0x4e, 0x6f,
                (byte) 0xd5, (byte) 0xdb, 0x37, 0x45, (byte) 0xde, (byte) 0xfd,
                (byte) 0x8e, 0x2f, 0x03, (byte) 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b,
                0x51, (byte) 0x8d, 0x1b, (byte) 0xaf, (byte) 0x92, (byte) 0xbb,
                (byte) 0xdd, (byte) 0xbc, 0x7f, 0x11, (byte) 0xd9, 0x5c, 0x41,
                0x1f, 0x10, 0x5a, (byte) 0xd8, 0x0a, (byte) 0xc1, 0x31,
                (byte) 0x88, (byte) 0xa5, (byte) 0xcd, 0x7b, (byte) 0xbd, 0x2d,
                0x74, (byte) 0xd0, 0x12, (byte) 0xb8, (byte) 0xe5, (byte) 0xb4,
                (byte) 0xb0, (byte) 0x89, 0x69, (byte) 0x97, 0x4a, 0x0c,
                (byte) 0x96, 0x77, 0x7e, 0x65, (byte) 0xb9, (byte) 0xf1, 0x09,
                (byte) 0xc5, 0x6e, (byte) 0xc6, (byte) 0x84, 0x18, (byte) 0xf0,
                0x7d, (byte) 0xec, 0x3a, (byte) 0xdc, 0x4d, 0x20, 0x79,
                (byte) 0xee, 0x5f, 0x3e, (byte) 0xd7, (byte) 0xcb, 0x39, 0x48 };
    
        private int[] CK = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
                0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5,
                0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81,
                0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d,
                0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
                0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25,
                0x2c333a41, 0x484f565d, 0x646b7279 };
    
        private int Rotl(int x, int y) {
            return x << y | x >>> (32 - y);
        }
    
        private int ByteSub(int A) {
            return (Sbox[A >>> 24 & 0xFF] & 0xFF) << 24
                    | (Sbox[A >>> 16 & 0xFF] & 0xFF) << 16
                    | (Sbox[A >>> 8 & 0xFF] & 0xFF) << 8 | (Sbox[A & 0xFF] & 0xFF);
        }
    
        private int L1(int B) {
            return B ^ Rotl(B, 2) ^ Rotl(B, 10) ^ Rotl(B, 18) ^ Rotl(B, 24);
            // return B^(B<<2|B>>>30)^(B<<10|B>>>22)^(B<<18|B>>>14)^(B<<24|B>>>8);
        }
    
        private int L2(int B) {
            return B ^ Rotl(B, 13) ^ Rotl(B, 23);
            // return B^(B<<13|B>>>19)^(B<<23|B>>>9);
        }
    
        void SMS4Crypt(byte[] Input, byte[] Output, int[] rk) {
            int r, mid, x0, x1, x2, x3;
            int[] x = new int[4];
            int[] tmp = new int[4];
            for (int i = 0; i < 4; i++) {
                tmp[0] = Input[0 + 4 * i] & 0xff;
                tmp[1] = Input[1 + 4 * i] & 0xff;
                tmp[2] = Input[2 + 4 * i] & 0xff;
                tmp[3] = Input[3 + 4 * i] & 0xff;
                x[i] = tmp[0] << 24 | tmp[1] << 16 | tmp[2] << 8 | tmp[3];
                // x[i]=(Input[0+4*i]<<24|Input[1+4*i]<<16|Input[2+4*i]<<8|Input[3+4*i]);
            }
            for (r = 0; r < 32; r += 4) {
                mid = x[1] ^ x[2] ^ x[3] ^ rk[r + 0];
                mid = ByteSub(mid);
                x[0] = x[0] ^ L1(mid); // x4
    
                mid = x[2] ^ x[3] ^ x[0] ^ rk[r + 1];
                mid = ByteSub(mid);
                x[1] = x[1] ^ L1(mid); // x5
    
                mid = x[3] ^ x[0] ^ x[1] ^ rk[r + 2];
                mid = ByteSub(mid);
                x[2] = x[2] ^ L1(mid); // x6
    
                mid = x[0] ^ x[1] ^ x[2] ^ rk[r + 3];
                mid = ByteSub(mid);
                x[3] = x[3] ^ L1(mid); // x7
            }
    
            // Reverse
            for (int j = 0; j < 16; j += 4) {
                Output[j] = (byte) (x[3 - j / 4] >>> 24 & 0xFF);
                Output[j + 1] = (byte) (x[3 - j / 4] >>> 16 & 0xFF);
                Output[j + 2] = (byte) (x[3 - j / 4] >>> 8 & 0xFF);
                Output[j + 3] = (byte) (x[3 - j / 4] & 0xFF);
            }
        }
    
        private void SMS4KeyExt(byte[] Key, int[] rk, int CryptFlag) {
            int r, mid;
            int[] x = new int[4];
            int[] tmp = new int[4];
            for (int i = 0; i < 4; i++) {
                tmp[0] = Key[0 + 4 * i] & 0xFF;
                tmp[1] = Key[1 + 4 * i] & 0xff;
                tmp[2] = Key[2 + 4 * i] & 0xff;
                tmp[3] = Key[3 + 4 * i] & 0xff;
                x[i] = tmp[0] << 24 | tmp[1] << 16 | tmp[2] << 8 | tmp[3];
                // x[i]=Key[0+4*i]<<24|Key[1+4*i]<<16|Key[2+4*i]<<8|Key[3+4*i];
            }
            x[0] ^= 0xa3b1bac6;
            x[1] ^= 0x56aa3350;
            x[2] ^= 0x677d9197;
            x[3] ^= 0xb27022dc;
            for (r = 0; r < 32; r += 4) {
                mid = x[1] ^ x[2] ^ x[3] ^ CK[r + 0];
                mid = ByteSub(mid);
                rk[r + 0] = x[0] ^= L2(mid); // rk0=K4
    
                mid = x[2] ^ x[3] ^ x[0] ^ CK[r + 1];
                mid = ByteSub(mid);
                rk[r + 1] = x[1] ^= L2(mid); // rk1=K5
    
                mid = x[3] ^ x[0] ^ x[1] ^ CK[r + 2];
                mid = ByteSub(mid);
                rk[r + 2] = x[2] ^= L2(mid); // rk2=K6
    
                mid = x[0] ^ x[1] ^ x[2] ^ CK[r + 3];
                mid = ByteSub(mid);
                rk[r + 3] = x[3] ^= L2(mid); // rk3=K7
            }
    
            // 解密时轮密钥使用顺序:rk31,rk30,...,rk0
            if (CryptFlag == DECRYPT) {
                for (r = 0; r < 16; r++) {
                    mid = rk[r];
                    rk[r] = rk[31 - r];
                    rk[31 - r] = mid;
                }
            }
        }
    
        public int sms4(byte[] in, int inLen, byte[] key, byte[] out, int CryptFlag) {
            int point = 0;
            int[] round_key = new int[ROUND];
            // int[] round_key={0};
            SMS4KeyExt(key, round_key, CryptFlag);
            byte[] input = new byte[16];
            byte[] output = new byte[16];
    
            while (inLen >= BLOCK) {
                input = Arrays.copyOfRange(in, point, point + 16);
                // output=Arrays.copyOfRange(out, point, point+16);
                SMS4Crypt(input, output, round_key);
                System.arraycopy(output, 0, out, point, BLOCK);
                inLen -= BLOCK;
                point += BLOCK;
            }
    
            return 0;
        }
    }

    封装对外接口:

    基于这个基本类,对其进行封装接口,主要接口如下:

    private static byte[] encode16(byte[] plain, byte[] key);
    private static byte[] decode16(byte[] cipher, byte[] key);
    private static byte[] encode32(byte[] plain, byte[] key);
    private static byte[] decode32(byte[] cipher, byte[] key);
    public static byte[] encodeSMS4(byte[] plain, byte[] key);
    public static byte[] decodeSMS4(byte[] cipher, byte[] key);
    public static String decodeSMS4toString(byte[] cipher, byte[] key);

    encode16(byte[], byte[])是针对16位明文和16位密钥进行加密的接口;
    private static byte[] decode16(byte[] cipher, byte[] key):是针对16位密文和16位密钥进行解密的接口;
    private static byte[] encode32(byte[] plain, byte[] key):是针对32位明文和16位密钥进行加密的接口;
    private static byte[] decode32(byte[] cipher, byte[] key):是针对32位密文和16位密钥进行解密的接口;
    public static byte[] encodeSMS4(byte[] plain, byte[] key):是针对不限字节数的明文和16位密钥进行加密的接口;
    public static byte[] decodeSMS4(byte[] cipher, byte[] key):是针对不限字节数的密文和16位密钥进行解密的接口;
    public static String decodeSMS4toString(byte[] cipher, byte[] key):是针对不限字节数的密文和16位密钥进行解密的接口;

    接口方法代码:

    public static byte[] encodeSMS4(String plaintext, byte[] key) {
            if (plaintext == null || plaintext.equals("")) {
                return null;
            }
            for (int i = plaintext.getBytes().length % 16; i < 16; i++) {
                plaintext += '';
            }
            
            return SMS4.encodeSMS4(plaintext.getBytes(), key);
        }
        
        /**
         * 不限明文长度的SMS4加密
         * 
         * @param plaintext
         * @param key
         * @return
         */
        public static byte[] encodeSMS4(byte[] plaintext, byte[] key) {
            byte[] ciphertext = new byte[plaintext.length];
            
            int k = 0;
            int plainLen = plaintext.length;
            while (k + 16 <= plainLen) {
                byte[] cellPlain = new byte[16];
                for (int i = 0; i < 16; i++) {
                    cellPlain[i] = plaintext[k + i];
                }
                byte[] cellCipher = encode16(cellPlain, key);
                for (int i = 0; i < cellCipher.length; i++) {
                    ciphertext[k + i] = cellCipher[i];
                }
                
                k += 16;
            }
    
            return ciphertext;
        }
    
        /**
         * 不限明文长度的SMS4解密
         * 
         * @param ciphertext
         * @param key
         * @return
         */
        public static byte[] decodeSMS4(byte[] ciphertext, byte[] key) {
            byte[] plaintext = new byte[ciphertext.length];
            
            int k = 0;
            int cipherLen = ciphertext.length;
            while (k + 16 <= cipherLen) {
                byte[] cellCipher = new byte[16];
                for (int i = 0; i < 16; i++) {
                    cellCipher[i] = ciphertext[k + i];
                }
                byte[] cellPlain = decode16(cellCipher, key);
                for (int i = 0; i < cellPlain.length; i++) {
                    plaintext[k + i] = cellPlain[i];
                }
                
                k += 16;
            }
            
            return plaintext;
        }
    
        /**
         * 解密,获得明文字符串
         * @param ciphertext
         * @param key
         * @return
         */
        public static String decodeSMS4toString(byte[] ciphertext, byte[] key) {
            byte[] plaintext = new byte[ciphertext.length];
            plaintext = decodeSMS4(ciphertext, key);
            return new String(plaintext);
        }
    
        /**
         * 只加密16位明文
         * 
         * @param plaintext
         * @param key
         * @return
         */
        private static byte[] encode16(byte[] plaintext, byte[] key) {
            byte[] cipher = new byte[16];
            SMS4 sm4 = new SMS4();
            sm4.sms4(plaintext, 16, key, cipher, ENCRYPT);
    
            return cipher;
        }
    
        /**
         * 只解密16位密文
         * 
         * @param plaintext
         * @param key
         * @return
         */
        private static byte[] decode16(byte[] ciphertext, byte[] key) {
            byte[] plain = new byte[16];
            SMS4 sm4 = new SMS4();
            sm4.sms4(ciphertext, 16, key, plain, DECRYPT);
    
            return plain;
        }
    只对32位明文加密这里不做介绍,与只对16位明文的方法很类似。

    而不限明文长度的加密和解密的基本算法就是基于这个只对16位进行加密和解密的基础之上的。对超过16位的明文,这里采用的是分组加密。而如果遇到像30位这样的不能被16整除长度的明文,这里采用一个补位的方式,就是将其补到对被16整除为止。原则上是只补到最小的一个能被16整除的数,当然如果你高兴,补大一些也没关系,因为补的是结束符''。

    分组加密是要把每一个16位明文加密一次,再把这些加密过的16位密文重新组合成一个新的密文。在解密的过程中也是先拆分成单个16位,再把这些解密后的若干明文重新组合成新的明文。


    使用示范:

    // 密钥
            byte[] key = { 0x01, 0x23, 0x45, 0x67, (byte) 0x89, (byte) 0xab,
                    (byte) 0xcd, (byte) 0xef, (byte) 0xfe, (byte) 0xdc,
                    (byte) 0xba, (byte) 0x98, 0x76, 0x54, 0x32, 0x10 };
    
            String newString = "Coding,你好!"; // 明文
            
            byte[] enOut = SMS4.encodeSMS4(newString, key);
            if (enOut == null) {
                return;
            }
            
            System.out.println("加密结果:");
            printBit(enOut);
    
            byte[] deOut = SMS4.decodeSMS4(enOut, key);
            System.out.println("
    解密结果(return byte[]):");
            printBit(deOut);
    
            String deOutStr = SMS4.decodeSMS4toString(enOut, key);
            System.out.println("
    解密结果(return String):
    " + deOutStr);


    示例Demo连接:

    http://download.csdn.net/detail/u013761665/8357917

  • 相关阅读:
    OpenGL编程 基础篇(二)Sierpinski垫片
    PAT1045. Favorite Color Stripe
    OpenGL编程 基础篇(一)
    百练1145:Tree Summing
    百练1745:Divisibility
    百练1321:棋盘问题
    Scrapy架构及其组件之间的交互
    MongoDB快速入门
    Redis快速入门
    Memcache所有方法及参数详解
  • 原文地址:https://www.cnblogs.com/fengju/p/6336123.html
Copyright © 2020-2023  润新知