• 全连接理解2


    (名称:全连接。意思就是输出层的神经元和输入层的每个神经元都连接)

    在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,这是怎么来的呢?目的何在呢?

    举个例子:


    最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个12*12的图像,然后通过了一个全连接层变成了1*100的向量。

    这是怎么做到的呢,其实就是有20*100个12*12的卷积核卷积出来的,对于输入的每一张图,用了一个和图像一样大小的核卷积,这样整幅图就变成了一个数了,如果厚度是20就是那20个核卷积完了之后相加求和。这样就能把一张图高度浓缩成一个数了。

    全连接的目的是什么呢?因为传统的网络我们的输出都是分类,也就是几个类别的概率甚至就是一个数--类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。

    但是全连接的参数实在是太多了,你想这张图里就有20*12*12*100个参数,前面随便一层卷积,假设卷积核是7*7的,厚度是64,那也才7*7*64,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。

    也就是最后那一层的feature map(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。
    ---------------------  
    作者:goodshot  
    来源:CSDN  
    原文:https://blog.csdn.net/GoodShot/article/details/79633313  
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    Mac OSX下增加TCP连接数
    Connection reset by peer的常见原因及解决办法
    修改主机名
    docker 查看 docker容器启动 完整命令
    nginx 日志打印响应时间 request_time 和 upstream_response_time
    Ubuntu16.04 安装 Docker
    VictoriaMetrics vmagent 使用
    VictoriaMetrics vmauth 使用
    VictoriaMetrics集群模式的一些说明
    promgen prometheus 配置文件生成工具
  • 原文地址:https://www.cnblogs.com/fengff/p/10885300.html
Copyright © 2020-2023  润新知