方法
- Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
- 方差选择法:低方差特征过滤
- 相关系数
- Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
- 决策树:信息熵、信息增益
- 正则化:L1、L2
- 深度学习:卷积等
4.1 低方差特征过滤
删除低方差的一些特征,前面讲过方差的意义。再结合方差的大小来考虑这个方式的角度。
- 特征方差小:某个特征大多样本的值比较相近
- 特征方差大:某个特征很多样本的值都有差别
4.1.1 API
- sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
- 删除所有低方差特征
- Variance.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
相关系数
- 皮尔逊相关系数(Pearson Correlation Coefficient)
- 反映变量之间相关关系密切程度的统计指标
特点
相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
- 当r>0时,表示两变量正相关,r<0时,两变量为负相关
- 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
- 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
- 一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关
#过滤低方差样本(相关性强的去掉,避免冗余) def variance_demo(): data=pd.read_csv("factor_returns.csv") data=data.iloc[:, 1:-2] # 2.实例化一个转换器类 transfer=VarianceThreshold(threshold=10)#特征数 # 3.调用fit_transform data_new=transfer.fit_transform(data) print(data_new,data_new.shape) r=pearsonr(data["pe_ratio"],data["pb_ratio"])#p值为显著性值p>0.05则说明结果有可能是由偶然因素引起的。 print(r) #相关系数人r<0.4低度相关,r>0.4&&r<0.7显著性相关,r<0.7高度线性相关