题目:
Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
1 / 2 3
Return 6
.
节点可能为负数,寻找一条最路径使得所经过节点和最大。路径可以开始和结束于任何节点但是不能走回头路。
这道题虽然看起来不同寻常,但是想一下,可以发现不外乎二叉树的遍历+简单的动态规划思想。
我们可以把问题拆分开:即便最后的最大路径没有经过根节点,它必然也有自己的“最高点”,因此我们只要针对所有结点,求出:如果路径把这个节点作为“最高点”,路径最长可达多少?记为max。然后在max中求出最大值MAX即为所求结果。和“求整数序列中的最大连续子序列”一样思路。
下面就是找各个“最高点”对应的max之间的关系了。
我们拿根节点为例,对于经过根节点的最大路径的计算方式为:
我们找出左子树中以左孩子为起点的最大路径长度a,和右子树中以右孩子为起点的最大路径长度b。然后这个点的 max = MAX(a+b+node.val, a+node.val, b+node.val, node.val)
因此我们定义一个函数来算上面的a或者b,它的参数是一个节点,它的返回值是最大路径长度,但是这个路径的起点必须是输入节点,而且路径必须在以起点为根节点的子树上。
那么函数func(node)的return值可以这样定义:return MAX(func(node.left)+node.val, func(node.right)+node.val, node.val)
终止条件是node == null,直接返回0。
接着我们发现上述计算max 和 求出MAX的过程完全可以放到func(node) 里去。
按照这个思路的代码,maxPathSumCore 就是上面 func(node)的实现:
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int maxPathSum(TreeNode *root) { maxPathSumCore(root); return MAX; } int maxPathSumCore(TreeNode *node) { if(NULL == node) return 0; int a = maxPathSumCore(node -> left); int b = maxPathSumCore(node -> right); if((a+b+node->val) > MAX) MAX = (a+b+node->val); if((a+node->val) > MAX) MAX = (a+node->val); if((b+node->val) > MAX) MAX = (b+node->val); if(node->val > MAX) MAX = node->val;
int maxViaThisNode = ((a + node->val) > node->val ? (a + node->val) : node->val); return (maxViaThisNode > (b + node->val) ? maxViaThisNode : (b + node->val)); } private: int MAX= -99999999; };
时间复杂度 O(n),n为总节点数。