• 人脸检测的C/C++源代码


     

    人脸检测的C/C++源代码,曾发表于 OPENCV 的 MAILING LIST,主要是对OPENCV 3.1 版本发布的代码做了一些速度上的优化,并且解决了内存泄漏的问题。这个程序所使用的 Paul Viola 提出(该论文“Rapid Object Detection using a Boosted Cascade of Simple Features”发表在 CVPR'01)的 Ada Boosted Cascade 算法可以说是目前最好最快的目标检测算法。

    关于OPENCV的介绍,参考:

    http://blog.csdn.net/hunnish/archive/2004/09/13/102535.aspx

    关于该算法的详细介绍,也可参考:

    http://www.merl.com/people/viola/research/publications/CVPR-2001.pdf

    以及:

    http://www.assuredigit.com/forum/display_topic_threads.asp?ForumID=11&TopicID=325

    http://www.assuredigit.com/forum/display_topic_threads.asp?ForumID=11&TopicID=463

    运行文件下载:

    http://www.assuredigit.com/product_tech/Demo_Download_files/Face.exe

    该程序可以对静止图像以及视频序列进行 face tracking。对视频序列,请先插入USB接口的摄像头。

    ====

    在OPENCV 3.1 版本,VC6.0下编译通过

    ====

    ===
    #ifdef _CH_
    #define WIN32
    #error "The file needs cvaux, which is not wrapped yet. Sorry"
    #endif

    #ifndef _EiC
    #include "cv.h"
    #include "cvaux.h"
    #include "highgui.h"

    #endif

    #ifdef _EiC
    #define WIN32
    #endif

    #define ORIG_WIN_SIZE  24
    static CvMemStorage* storage = 0;
    static CvHidHaarClassifierCascade* hid_cascade = 0;

    #define WINNAME  "Result"

    void detect_and_draw( IplImage* image, IplImage* TempImage );

    int main( int argc, char** argv )
    {
        CvCapture* capture = 0;

        CvHaarClassifierCascade* cascade =
        cvLoadHaarClassifierCascade( "",
                             cvSize( ORIG_WIN_SIZE, ORIG_WIN_SIZE ));
        hid_cascade = cvCreateHidHaarClassifierCascade( cascade, 0, 0, 0, 1 );
        cvReleaseHaarClassifierCascade( &cascade );

        cvNamedWindow( WINNAME, 1 );
        storage = cvCreateMemStorage(0);
       
        if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
            capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
        else if( argc == 2 )
            capture = cvCaptureFromAVI( argv[1] );

        if( capture )
        {
            IplImage *frame, *temp;
            cvGrabFrame( capture );
            frame = cvRetrieveFrame( capture );
           
            temp = cvCreateImage( cvSize(frame->width/2,frame->height/2), 8, 3 );

            for(;;)
            {
                if( !cvGrabFrame( capture ))
                    break;
                frame = cvRetrieveFrame( capture );
                if( !frame )
                    break;

                detect_and_draw( frame, temp );

                if( cvWaitKey( 10 ) >= 0 )
                {
                    //cvReleaseImage( &frame );
                    //cvReleaseImage( &temp );
                    cvReleaseCapture( &capture );
                    cvDestroyWindow(WINNAME);
                    return  0;
                }
            }
        }
        else 
        {
            char* filename = argc == 2 ? argv[1] : (char*)"lena.jpg";
            IplImage* image = cvLoadImage( filename, 1 );
            IplImage* temp = cvCreateImage( cvSize(image->width/2,image->height/2), 8, 3 );

            if( image )
            {
                cvFlip( image, image, 0 );
                image->origin = IPL_ORIGIN_BL;
                detect_and_draw( image, temp );
                cvWaitKey(0);
                cvReleaseImage( &image );
                cvReleaseImage( &temp );
            }
            cvDestroyWindow(WINNAME);
            return 0;
        }
        return 0;
    }

    void detect_and_draw( IplImage* img, IplImage* temp )
    {
        int scale = 2;
        CvPoint pt1, pt2;
        int i;

        cvPyrDown( img, temp, CV_GAUSSIAN_5x5 );
    #ifdef WIN32
        cvFlip( temp, temp, 0 );
    #endif   
        cvClearMemStorage( storage );

        if( hid_cascade )
        {
            CvSeq* faces = cvHaarDetectObjects( temp, hid_cascade, storage,
                                                1.2, 2, CV_HAAR_DO_CANNY_PRUNING );
            for( i = 0; i < (faces ? faces->total : 0); i++ )
            {
                CvRect* r = (CvRect*)cvGetSeqElem( faces, i, 0 );
                pt1.x = r->x*scale;
                pt2.x = (r->x+r->width)*scale;
    #ifdef WIN32           
                pt1.y = img->height - r->y*scale;
                pt2.y = img->height - (r->y+r->height)*scale;
    #else
                pt1.y = r->y*scale;
                pt2.y = (r->y+r->height)*scale;
    #endif           
                cvRectangle( img, pt1, pt2, CV_RGB(255,255,0), 3 );
            }
        }

        cvShowImage(WINNAME, img );
        //cvReleaseImage( &temp );
    }

    #ifdef _EiC
    main(1,"facedetect.c");
    #endif

    来自: http://tb.blog.csdn.net/TrackBack.aspx?PostId=92039

  • 相关阅读:
    架构中那些需要注意的事儿
    谈谈测试环境管理与实践
    响应式布局
    flex布局
    crontab定时任务
    SpringMVC Json自定义序列化和反序列化
    Tensorflow 使用TPU训练
    使用Selenium从IEEE与谷歌学术批量爬取BibTex文献引用
    Pyecharts——Python高级可视化
    Python图像处理库——PIL
  • 原文地址:https://www.cnblogs.com/feisky/p/1586630.html
Copyright © 2020-2023  润新知