• 简单的遗传算法源代码


    2007年11月07日 14:56:00
    导读:
      文章由算法源码吧(www.sfcode.cn)收集
      这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的 文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。
      
      
      
      
      
      
      #include
      #include
      #include
      
      #define POPSIZE 50
      #define MAXGENS 1000
      #define NVARS 3
      #define PXOVER 0.8
      #define PMUTATION 0.15
      #define TRUE 1
      #define FALSE 0
      int generation;
      int cur_best;
      FILE *galog;
      struct genotype
      {
      double gene[NVARS];
      double fitness;
      double upper[NVARS];
      double lower[NVARS];
      double rfitness;
      double cfitness;
      };
      struct genotype population[POPSIZE+1];
      struct genotype newpopulation[POPSIZE+1];
      
      
      
      void initialize(void);
      double randval(double, double);
      void evaluate(void);
      void keep_the_best(void);
      void elitist(void);
      void select(void);
      void crossover(void);
      void Xover(int,int);
      void swap(double *, double *);
      void mutate(void);
      void report(void);
      
      
      
      
      
      
      
      
      
      
      
      void initialize(void)
      {
      FILE *infile;
      int i, j;
      double lbound, ubound;
      if ((infile = fopen("gadata.txt","r"))==NULL)
      {
      fprintf(galog,"\nCannot open input file!\n");
      exit(1);
      }
      
      for (i = 0; i
      {
      fscanf(infile, "%lf",&lbound);
      fscanf(infile, "%lf",&ubound);
      for (j = 0; j
      {
      population[j].fitness = 0;
      population[j].rfitness = 0;
      population[j].cfitness = 0;
      population[j].lower[i] = lbound;
      population[j].upper[i]= ubound;
      population[j].gene[i] = randval(population[j].lower[i],
      population[j].upper[i]);
      }
      }
      fclose(infile);
      }
      
      
      
      double randval(double low, double high)
      {
      double val;
      val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
      return(val);
      }
      
      
      
      
      
      void evaluate(void)
      {
      int mem;
      int i;
      double x[NVARS+1];
      for (mem = 0; mem
      {
      for (i = 0; i
      x[i+1] = population[mem].gene[i];
      population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
      }
      }
      
      
      
      
      
      void keep_the_best()
      {
      int mem;
      int i;
      cur_best = 0;
      for (mem = 0; mem
      {
      if (population[mem].fitness >population[POPSIZE].fitness)
      {
      cur_best = mem;
      population[POPSIZE].fitness = population[mem].fitness;
      }
      }
      
      for (i = 0; i
      population[POPSIZE].gene[i] = population[cur_best].gene[i];
      }
      
      
      
      
      
      
      
      void elitist()
      {
      int i;
      double best, worst;
      int best_mem, worst_mem;
      best = population[0].fitness;
      worst = population[0].fitness;
      for (i = 0; i
      {
      if(population[i].fitness >population[i+1].fitness)
      {
      if (population[i].fitness >= best)
      {
      best = population[i].fitness;
      best_mem = i;
      }
      if (population[i+1].fitness <= worst)
      {
      worst = population[i+1].fitness;
      worst_mem = i + 1;
      }
      }
      else
      {
      if (population[i].fitness <= worst)
      {
      worst = population[i].fitness;
      worst_mem = i;
      }
      if (population[i+1].fitness >= best)
      {
      best = population[i+1].fitness;
      best_mem = i + 1;
      }
      }
      }
      
      
      
      
      
      if (best >= population[POPSIZE].fitness)
      {
      for (i = 0; i
      population[POPSIZE].gene[i] = population[best_mem].gene[i];
      population[POPSIZE].fitness = population[best_mem].fitness;
      }
      else
      {
      for (i = 0; i
      population[worst_mem].gene[i] = population[POPSIZE].gene[i];
      population[worst_mem].fitness = population[POPSIZE].fitness;
      }
      }
      
      
      
      
      
      void select(void)
      {
      int mem, i, j, k;
      double sum = 0;
      double p;
      
      for (mem = 0; mem
      {
      sum += population[mem].fitness;
      }
      
      for (mem = 0; mem
      {
      population[mem].rfitness = population[mem].fitness/sum;
      }
      population[0].cfitness = population[0].rfitness;
      
      for (mem = 1; mem
      {
      population[mem].cfitness = population[mem-1].cfitness +
      population[mem].rfitness;
      }
      
      for (i = 0; i
      {
      p = rand()%1000/1000.0;
      if (p
      newpopulation[i] = population[0];
      else
      {
      for (j = 0; j
      if (p >= population[j].cfitness &&
      p
      newpopulation[i] = population[j+1];
      }
      }
      
      for (i = 0; i
      population[i] = newpopulation[i];
      }
      
      
      
      
      void crossover(void)
      {
      int i, mem, one;
      int first = 0;
      double x;
      for (mem = 0; mem
      {
      x = rand()%1000/1000.0;
      if (x
      {
      ++first;
      if (first % 2 == 0)
      Xover(one, mem);
      else
      one = mem;
      }
      }
      }
      
      
      
      void Xover(int one, int two)
      {
      int i;
      int point;
      
      if(NVARS >1)
      {
      if(NVARS == 2)
      point = 1;
      else
      point = (rand() % (NVARS - 1)) + 1;
      for (i = 0; i
      swap(&population[one].gene[i], &population[two].gene[i]);
      }
      }
      
      
      
      void swap(double *x, double *y)
      {
      double temp;
      temp = *x;
      *x = *y;
      *y = temp;
      }
      
      
      
      
      
      void mutate(void)
      {
      int i, j;
      double lbound, hbound;
      double x;
      for (i = 0; i
      for (j = 0; j
      {
      x = rand()%1000/1000.0;
      if (x
      {
      
      lbound = population[i].lower[j];
      hbound = population[i].upper[j];
      population[i].gene[j] = randval(lbound, hbound);
      }
      }
      }
      
      
      
      
      void report(void)
      {
      int i;
      double best_val;
      double avg;
      double stddev;
      double sum_square;
      double square_sum;
      double sum;
      sum = 0.0;
      sum_square = 0.0;
      for (i = 0; i
      {
      sum += population[i].fitness;
      sum_square += population[i].fitness * population[i].fitness;
      }
      avg = sum/(double)POPSIZE;
      square_sum = avg * avg * POPSIZE;
      stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
      best_val = population[POPSIZE].fitness;
      fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,
      best_val, avg, stddev);
      }
      
      
      
      
      
      
      void main(void)
      {
      int i;
      if ((galog = fopen("galog.txt","w"))==NULL)
      {
      exit(1);
      }
      generation = 0;
      fprintf(galog, "\n generation best average standard \n");
      fprintf(galog, " number value fitness deviation \n");
      initialize();
      evaluate();
      keep_the_best();
      while(generation
      {
      generation++;
      select();
      crossover();
      mutate();
      report();
      evaluate();
      elitist();
      }
      fprintf(galog,"\n\n Simulation completed\n");
      fprintf(galog,"\n Best member: \n");
      for (i = 0; i
      {
      fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
      }
      fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
      fclose(galog);
      printf("Success\n");
      本文链接网址

    本文转自
    http://www.sfcode.cn/soft/00538835.htm

    Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=1871595


  • 相关阅读:
    sql number类型和varchar2类型
    B
    E
    D
    B
    A
    第三课 选区
    第二课 新建文件与图层
    第一课 界面认识
    CSS命名规则
  • 原文地址:https://www.cnblogs.com/feisky/p/1586624.html
Copyright © 2020-2023  润新知