• 7,城市气候与海洋的关系研究


    导入包

    import numpy as np
    import pandas as pd
    from pandas import Series,DataFrame
    
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    # 设置显示汉字
    import sys
    reload(sys)
    sys.setdefaultencoding('utf8')
    
    
    from pylab import mpl
    mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
    mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
    

      

    2,导入数据各个海滨城市数据

    ferrara1 = pd.read_csv('./ferrara_150715.csv')
    ferrara2 = pd.read_csv('./ferrara_250715.csv')
    ferrara3 = pd.read_csv('./ferrara_270615.csv')
    ferrara=pd.concat([ferrara1,ferrara1,ferrara1],ignore_index=True)
    
    torino1 = pd.read_csv('./torino_150715.csv')
    torino2 = pd.read_csv('./torino_250715.csv')
    torino3 = pd.read_csv('./torino_270615.csv')
    torino = pd.concat([torino1,torino2,torino3],ignore_index=True) 
    
    mantova1 = pd.read_csv('./mantova_150715.csv')
    mantova2 = pd.read_csv('./mantova_250715.csv')
    mantova3 = pd.read_csv('./mantova_270615.csv')
    mantova = pd.concat([mantova1,mantova2,mantova3],ignore_index=True) 
    
    milano1 = pd.read_csv('./milano_150715.csv')
    milano2 = pd.read_csv('./milano_250715.csv')
    milano3 = pd.read_csv('./milano_270615.csv')
    milano = pd.concat([milano1,milano2,milano3],ignore_index=True) 
    
    ravenna1 = pd.read_csv('./ravenna_150715.csv')
    ravenna2 = pd.read_csv('./ravenna_250715.csv')
    ravenna3 = pd.read_csv('./ravenna_270615.csv')
    ravenna = pd.concat([ravenna1,ravenna2,ravenna3],ignore_index=True)
    
    asti1 = pd.read_csv('./asti_150715.csv')
    asti2 = pd.read_csv('./asti_250715.csv')
    asti3 = pd.read_csv('./asti_270615.csv')
    asti = pd.concat([asti1,asti2,asti3],ignore_index=True)
    
    bologna1 = pd.read_csv('./bologna_150715.csv')
    bologna2 = pd.read_csv('./bologna_250715.csv')
    bologna3 = pd.read_csv('./bologna_270615.csv')
    bologna = pd.concat([bologna1,bologna2,bologna3],ignore_index=True)
    
    piacenza1 = pd.read_csv('./piacenza_150715.csv')
    piacenza2 = pd.read_csv('./piacenza_250715.csv')
    piacenza3 = pd.read_csv('./piacenza_270615.csv')
    piacenza = pd.concat([piacenza1,piacenza2,piacenza3],ignore_index=True)
    
    cesena1 = pd.read_csv('./cesena_150715.csv')
    cesena2 = pd.read_csv('./cesena_250715.csv')
    cesena3 = pd.read_csv('./cesena_270615.csv')
    cesena = pd.concat([cesena1,cesena2,cesena3],ignore_index=True)
    
    faenza1 = pd.read_csv('./faenza_150715.csv')
    faenza2 = pd.read_csv('./faenza_250715.csv')
    faenza3 = pd.read_csv('./faenza_270615.csv')
    faenza = pd.concat([faenza1,faenza2,faenza3],ignore_index=True)
    faenza.head()
    

     

    4,去除没用的列

    city_list = [ferrara,torino,mantova,milano,ravenna,asti,bologna,piacenza,cesena,faenza]
    for city in city_list:
        city.drop(labels='Unnamed: 0',axis=1,inplace=True)
    

    5,显示最高温度于离海远近的关系(观察多个城市) 

    city_max_temp = []
    city_dist = []
    for city in city_list:
        max_temp = city['temp'].max()
        city_max_temp.append(max_temp)
        dist = city['dist'][0]
        city_dist.append(dist)
    
    #查看各个城市的最高温度数据
    city_max_temp
    

     

    plt.scatter(city_dist,city_max_temp)
    plt.xlabel('距离')
    plt.ylabel('最高温度')
    plt.title('距离和温度之间的关系图')
    

    观察发现,离海近的可以形成一条直线,离海远的也能形成一条直线。

    - 分别以100公里和50公里为分界点,划分为离海近和离海远的两组数据(近海:小于100  远海:大于50)
    #找出所有的近海城市(温度和距离)
    np_city_dist = np.array(city_dist)
    np_city_max_temp = np.array(city_max_temp)
    
    near_condition = np_city_dist < 100
    near_city_dist = np_city_dist[near_condition]
    near_city_max_temp = np_city_max_temp[near_condition]
    
    plt.scatter(near_city_dist,near_city_max_temp)
    

    机器学习

    - 算法模型对象:特殊的对象.在该对象中已经集成好个一个方程(还没有求出解的方程).
    - 模型对象的作用:通过方程实现预测或者分类
    - 样本数据(df,np):
        - 特征数据:自变量
        - 目标(标签)数据:因变量
    - 模型对象的分类:
        - 有监督学习:模型需要的样本数据中存在特征和目标
        - 无监督学习:模型需要的样本数据中存在特征
        - 半监督学习:模型需要的样本数据部分需要有特征和目标,部分只需要特征数据
    - sklearn模块:封装了多种模型对象.

     导入sklearn,建立线性回归算法模型对象

    #1.导包
    from sklearn.linear_model import LinearRegression
    #2.实例化模型对象
    linner = LinearRegression()
    #3.提取样本数据
    #4.训练模型
    linner.fit(near_city_dist.reshape(-1,1),near_city_max_temp)
    #5.预测
    linner.predict(38)  
    #array([33.16842645])
    
    linner.score(near_city_dist.reshape(-1,1),near_city_max_temp)
    0.77988083971852
    
    #绘制回归曲线
    x = np.linspace(10,70,num=100)
    y = linner.predict(x.reshape(-1,1))
    
    plt.scatter(near_city_dist,near_city_max_temp)
    plt.scatter(x,y,s=0.2)
    

      

    #将近海和远海的散点图合并显示
    plt.scatter(far_city_dists,far_max_temps,s=100)
    plt.scatter(near_city_dists,near_max_temps)
    plt.scatter(far_city_dists,far_max_temps)
    plt.plot(x,y)
    plt.scatter(near_city_dists,near_max_temps)
    plt.plot(x1,y1)
    plt.title('最高温度和距海洋距离的关系图',fontsize=20)
    plt.xlabel('距海洋距离',fontsize=15)
    plt.ylabel('最高温度',fontsize=15)
    

      

  • 相关阅读:
    音频重采样48kk转16k
    ld: symbol(s) not found for architecture x86_64问题解决
    麦克风啸叫抑制解决方案之移频法
    gcc makefile 模板
    mysql 分组加序号
    java微信公众号JSAPI支付以及所遇到的坑
    appium新手入门(1)—— appium介绍
    一次完整的JVM堆外内存泄漏故障排查记录
    mysql 批量更改表名
    爬虫技术
  • 原文地址:https://www.cnblogs.com/feifeifeisir/p/10497943.html
Copyright © 2020-2023  润新知