在测试过程中,经常会取JSON中的某个值,jmespath可以是除了jsonpath的另外一种选择.
下面通过几个例子来说明jmespath在python的使用
jmespath python安装
非常简单直接pip,
pip install jmespath
查询一个key值
source={"a": "foo", "b": "bar", "c": "baz"}
result = jmespath.search("a",source)
print(result)
这个的结果为:foo
subexpression
类似于jsonpath,通过.
来表示路径的层级
source_1={"a": {"b": {"c": {"d": "value"}}}}
sub_result = jmespath.search("a.b.c",source_1)
print(sub_result)
这个例子的结果为:{'d': 'value'}
index expressions
index expression主要使用在数组上
source_2 = ["a", "b", "c", "d", "e", "f"]
index_result = jmespath.search("[1]",source_2)
print(index_result)
这个例子的结果为:b
多个表达式综合使用
以上几种表达式可以合起来一期使用:
composite_exp = "a.b.c[0].d[1][0]"
source_3= {"a": {
"b": {
"c": [
{"d": [0, [1, 2]]},
{"d": [3, 4]}
]
}
}}
composite_result = jmespath.search(composite_exp,source_3)
print(composite_result)
这个例子的结果为1
Slicing 切片
slicing 和python本身的slicing比较像,
source_4=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
slicing_exp = "[0:5]"
slicing_result = jmespath.search(slicing_exp,source_4)
print(slicing_result)
这个例子的结果为: [0, 1, 2, 3, 4]
slicing实际上和python自己的机制基本一样,同样这个也是主要给数组使用.
有一点需要记住,基本的slicing的格式其实是: [start:stop:step]
Projections
projection不知道怎么翻译,就先叫做投影吧,具体通过例子来说比较好理解.
projections主要包含一下几种情况:
- List Projections
- Slice Projections
- Object Projections
- Flatten Projections
- Filter Projections
Projections- 例子
list_exp="people[*].first"
source_5 = {
"people": [
{"first": "James", "last": "d"},
{"first": "Jacob", "last": "e"},
{"first": "Jayden", "last": "f"},
{"missing": "different"}
],
"foo": {"bar": "baz"}
}
proj_result1= jmespath.search(list_exp,source_5)
print(proj_result1) # ['James', 'Jacob', 'Jayden']
obj_exp ="reservations[*].instances[*].state"
source_6= {
"reservations": [
{
"instances": [
{"state": "running"},
{"state": "stopped"}
]
},
{
"instances": [
{"state": "terminated"},
{"state": "runnning"}
]
}
]
}
proj_result2=jmespath.search(obj_exp,source_6)
print(proj_result2) #[['running', 'stopped'], ['terminated', 'runnning']]
# Flatten projections
source_7=[
[0, 1],
2,
[3],
4,
[5, [6, 7]]
]
flat_exp ="[]"
flat_result = jmespath.search(flat_exp,source_7)
print(flat_result) # [0, 1, 2, 3, 4, 5, [6, 7]]
# filter
filter_exp="machines[?state=='running'].name"
filter_source ={
"machines": [
{"name": "a", "state": "running"},
{"name": "b", "state": "stopped"},
{"name"